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1.0 INTRODUCTION

The fh-st year's effort on NASA Grant NAGS-2006 was an investigation to characterize typ-

ical errors resulting from the EOS dorn link. The analysis methods developed for this effort were

used on test data from a March 1992 White Sands Terminal Test.

The effectiveness of a concatenated coding scheme of a Reed Solomon outer code and a con-

volutional inner code versus a Reed Solomon only code scheme has been investigated as well as the

effectiveness of a Periodic Convolutional Interleaver in dispersing errors of certain types.

The work effort consisted of development of software that allows simulation studies with

the appropriate coding schemes plus either simulated data with errors or actual data with errors. The

annual report dated July 1, 1992 to December 30, 1992, Appendix I, reports in detail on the software

tools developed and delivered to NASA/GSFC. The software program is entitled Communication

Link Error Analysis (CLEAN) and models downlink errors, forward error correcting schemes, and
interleavers.

The quarterly report, January 1993 to March 30, 1993, Appendix II, details the analysis of

the real error sequence from the Ku-band downlink obtained from NASA/GSFC in February 1993.

This error slream was analyzed using statistical tests. The Ku-band downlink errors through the

TDRS to White Sands link are shown to be random errors. This conclusion is drawn by (1) compar-

ing the empirical error interval distribution from the real EOS data to the theoretical error interval

distribution assuming random occurrences of error pairs at the NRZM decoder output and (2) per-

forming the CVM (CRAMER VON-MISES) distribution test on a subset of the real data. In this

quarterly report, a study of the performance of the (255,223) Reed-Solomon (RS) code on bursty

errors is also present as well as a brief study dealing with synchronization for the CCSDS transfer

frame format which includes a 32 bit PN sequence header.

The report in Appendix 1TI report gives a summary of the work from July 1, 1992 to June

30, 1993 as well as giving a set of curves comparing various coding scheme performances as deter-

mined via CLEAN for NRZM decoding. These curves are presented for RS Coding, Convolutional

Coding, DPCI/Convolutional Coding, Concatenated Coding, RS Coding with erasure decoding.

These codes were compared for decoded bit error rate performance for Random-Error Channels and

Bursty-Error Channels. The Bursty Error Channels are analyzed for different mixes of bursts versus
random errors.

Comments on Rice Compression pitfalls is also included in the Appendix HI material.
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I. INTRODUCTION

This report describes research performed to date on NASA Grant NAG5-2006 for the

period July 1, 1992 through December 1, 1992. This work involves studying the performance of

forward error correcting coding schemes on errors anticipated for the Earth Observation System

(EOS) Ku-band downlink.

The EOS transmits picture frame data to the ground via the Telemetry Data Relay Satellite

System (TDRSS) to a ground-based receiver at White Sands. Due to unintentional RF interfer-

ence from other systems operating in the Ku band, the noise at the receiver is non-Gaussian

which may result in non-random errors output by the demodulator. That is, the downlink chan-

nel cannot be modeled by a simple memoryless Gaussian-noise channel. From previous experi-

ence, it is believed that those errors are bursty.

The research has proceeded by developing a computer based simulation, called Communi-

cation Link Error ANalysis (CLEAN), to model the downlink errors, forward error correcting

schemes, and interleavers used with TDRSS. To date, the bulk of CLEAN, described in Sections

3, 4, and 5, has been written, documented, debugged, and verified. The procedures for utilizing

CLEAN to investigate code performance have been established and will be discussed in Section

5.



H. SOURCE CODE GENERAL DESCRIPTION

Each system component (decoder, deinterleaver, etc.) has been implemented in CLEAN as

separate executable computer programs which interface with each other through data files

including an error sequence data file. This allows them to be executed sequentiaUy via a batch

file.

All computer programs read parameters from a separate ASCII parameter file with a fixed

default name. The default name for the parameter file is the same as the executable but has the

extension 'prm'. Also, there is a global parameter file, 'ID.prm', which contains a simulation

identifier (ID). Each program generates an output file with an extension identical to this ID.

This output file contains all the calculated statistics and estimated parameters from the program.

This allows all the files generated by a specific run to be quickly identified and distinguished

from data files generated by other runs.

To conduct the studies, a batch file is created which contains a series of executable pro-

grams. The type and order of the exeeutables in the batch file implements a particular system

configuration. For example, if the user chooses to use a Reed-Solomon (RS) decoder to decode a

sequence of random errors, then the batch file contains two executables; the first generates a ran-

dom error sequence and the second uses an RS decoder to correct them. In general, the batch file

contains one of the channel error sequence generation programs which will generate an error

sequence stored in file name 'error.seq'. Each program which is executed makes use of and/or

modifies that error sequence and generates statistics and other outputs for the error pattern.

The programs have been written with parameter bounds in mind. For example, the pro-

grams are designed so that the lowest channel average error probability to be investigated, coded

or uncoded, is roughly 106. Along with this, it is assumed that 20 errors are the minimum num-

ber required to characterize the statistics of the channel, however, in general many more errors

will be generated per sequence. Thus as an upper bound, generating an error sequence, coded or

uncoded, with an error probability of 10 "_requires a minimum of 20/10 .6 = 2x107 error sequence

values. The error sequence file is stored in a "packed" format so that 15 error sequence values

are stored per two bytes of memory. Therefore, the largest error sequence file is 2x107/(2/15) =

2.67Mbytes. This is sufficiently small so that allowable disc space on most computers can

accommodate several files at once. In general, error files are not stored but are generated on the

fly. Results can be reproduced by regenerating an error sequence given the proper random num-

ber generator and the seed. If it turns out that regenerating the error sequence takes too long,

then a set of error sequences can be generated and stored on disc or magnetic tape to be retrieved

when required.
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All programs have been documented upon completion with a documentation test run. All

the generated documentation is stored in a common binder for later reference.

Each program conforms to a documentation standard which includes a program/subrouti-

ne/function header as well as line comments within the code. On average, there should be a

comment line per 6 lines of code to indicate the purpose of the next few lines of code. The rou-

tine header takes the following form:

**********************************************************************

C*

c* - Program/Subroutine/Function name: name (Acronym meaning)

c*

c* - Purpose: This program/subroutlne/function ...

c*

c*

c* - Revision History:

c* Date Who Reason

c* ................................................................

c* May 25, 1992 WE Orlglnal
c*

c*

c* - Variable/File List:

c* Name Type Description

c* ..............................................................

c* Inputs:

c*

c* Outputs:

c*

c* Internals:

c*

c*

c* - Subroutines called:

c* - Subroutines called by:

c* - Functions called:

c* - Functions called by:

c*

************************************************************************

As an example, a program written to create a bursty-error sequence may have a header

which appears as follows:

c*

c* - Program name: BstyErrS (Bursty-Error Sequence)
c*

c* - Purpose: Thls program generates an binary error sequence wlth

c* bursty errors. The error sequence denotes a correct blnary channel
c* transmission with a 0 and denotes an error wlth a i. The error

c* sequence is partitioned into two main, noncontiguous parts, the burst

c* error part and the thermal error part. The method used to generate

c* each part of the error sequence depends upon the denslty of errors to

c* be generated. For each error sequence part, if the required density of

c* errors is greater than .01, then the program uses a conditional test on

c* a uniform random number in the range [0,1]. If the density of errors Is

c* less than .01, then the program will use a sample from the exponentlal

c* distributlon to generate the next error occurrence time.

c* This program inputs parameters from an ASCII data f11e wlth default

c* name 'BstyErrs.prm' and outputs the error sequence to a data file

c* with default name 'error.seq'. In addition, various statistics are

c* output to an ASCII data file with default name 'BstyErrs. ID', where

c* ID is a three letter identlfler for the current run which Is input from

c* file 'ID.prm'.

c* The program is run by editing the parameter file 'BstyErrs.prm' and

c* selecting the appropriate parameters and by choosing a program ID by

c* editing file "ID.prm'. Executing the program generates the 'error.seq"

c* file which contains an error sequence (in packed format) with

c* binomially distributed errors. It does not matter whether the output

c* file "error.seq' exlsts or not. If it exists, it is overwritten without

c* a prompt to the user.

c* Even though Poisson distributed bursts may overlap in theory, thls

c* progam does not allow error bursts to overlap. The user must take care

c* to specify input parameters so that the probability of overlapping

c* burst is negligible. It is also assumed that Peg<Peb.
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c*

c*

c* - Revision History:

c* Date

c*

Who Reason

c* Aug 20, 1992 WE

c* Sept 14, 1992 WE

c*

c* Oct 2, 1992 WE

c*

c* Nov 4, 1992 WE

c*

c* Nov 13, 1992 WE

c* NOV 16, 1992 WE

c*

c*

c* - Variable/File List:

c*

c*

c*

c*

c*

Original
Modified to use Makefile to link source

and updated the documentation

Output Number of Errors to the error.seq

file header

Updated NextBurst function argument list

to include the prevlous burst length

Added write to output Logl0(Density)

Changed all real variables to double preclsion

Inputs: None (See subroutine ReadParams)

Outputs:

Name Type Description

c*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

C*

error.seq file

Nerrs integer*4

ErrDensity real*8

NBurstyErrs integer*4

GenBurstDen real*8

GenThermDen real*8

NBursts integer*4

GenMeanIntv real*8

TotalBLength integer*4

GenBDuratlon real*8

Internals:

ID character*3

N integer*4

Tbs real*8

Peg real*8

PegSeed real*8

Peb real*8

PebSeed real*8

IntvFlag integer*4

IntvMean integer*4

IntvSeed real*8

IntvVar integer*4

LngthFlag integer*4

LngthMean integer*4

LngthSeed real*8

LngthVar integer*4

i,] integer*4

RecNum integer*4

NseqSym integer*4

Error(15) integer*4

zero integer*4

BurstIntvCount integer*4

PrevLength integer*4

ErrorBurstCount integer*4

PegIntvCount integer*4

PebIntvCount integer*4

DBESS integer*4

URV real*8

NSplit(2) integer*2

NESplit(2) integer*2

Error sequence output file

(in packed format)

Total Number of errors generated

Total Error density for generated seq

Number of errors in the bursts

Error density within the error bursts

Error denslty outside the error bursts

Total number of bursts generated

Average burst occurrence

Total sum of burst lengths

Average burst length (seq sym)

Identifier for statlstlcs output file

Error sequence length

Blnary channel symbol frequency (freq.)

Thermal error density

Peg random number generator seed

Burst error density

Peb random number generator seed

= i, Periodic error occurrence times

= 2, Saussian error occurrence times

= 3, Poisson error occurrence tlmes

Burst occurrence rate (interval mean)

Interval random number generator seed

Burst occurrence rate variance

(Interval statistic variance)

= i, Flxed length error bursts

= 2, Gausslan dist. error burst lengths

= 3, Exponential error burst lengths

Burst length distribution mean

Length random number generator seed

Burst length distribution varlance

Do loop indices

Record number index (error.seq file)

Number of DBESS

Contalns 15 error sequence values

Identlcally the number 0
Interval Count to next error burst

Prevlous Burst Length

Length of next error burst (seq sym)

Interval Count to next Therm error

Interval Count to next burst error

15 consecutive error sequence values

stored in a 2 byte Integer. Stands

for Doub]e Byte Error Sequence Symbol

Unlform random varlable in [0, i]

A dummy array used to access each

double byte of the integer*4

number N.

A dummy array used to access each

double byte of the integer*4

number Nerrs.

c* - Subroutines called: ReadParams, IterBinErrGen

c* - Functions called: PackErrors, UnlformRV, NextBurst, NextLength
c*

************************************************************************
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Figure 1 shows an overall block diagram depicting the CLEAN simulation capability.

CLEAN simulation requires the following assumptions:

The

1) The transmitted data is all zero

2) Synchronization has been established (i.e. only steady state error statistics are consid-
ere, d)

3) Demodulator performs hard decisions

At each of the points labeled A, B, C, D, and E shown in Figure 1, it is possible to perform statis-

tical analysis including (see Section HI.D below):

1) Perform the Cramer Von Mises distribution test to determine if the errors are random.

2) Perform the Cramer Von Mises distribution test on blocks of the error sequence.

3) Estimate burst-error parameters

a) Average burst-error length

b) Variance of the burst-error length

c) List of the burst-error lengths

d) Average random interval length

e) Variance of the random interval length

d) List of the random interval lengths

4) The error interval histogram (for random errors this should be an exponential distribu-
tion)

5) Determination of the burst-error distribution 'ala' CLASS

For each program, the calculated statistics are output to the log file as described above.
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Block Encoder => Block Interleaver =>
Convohtional Encoder => PCI

Always Send 0 Vector

Error Vector E

Bursty [Noise

A

_l Vitcrbi_.._7
B C

D E

: Data

Figure 1. Overall block diagram depicting the CLEAN simulation capability.
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In this section, the programs which deal with the TDRSS system simulation are briefly

described.

A. Forward Error Correcting Codes

The contract requires that Reed-Solomon codes and convolutional codes be considered.

Reed-Solomon codes are a class of block codes. To this end, a program is described which

implements the effect of an (n,k,m,t) block incomplete, errors-only decoder and a separate pro-

gram to implement a Viterbi decoder which is used to decode convolutional codes.

1. BlkDecod (Block Decoder)

This program performs the effect of an incomplete, errors (erasure) only decoder. The pro-

gram operates by simply partitioning the error sequence into blocks equivalent to a received

codeword. Error statistics are calculated from each block including the number of bit errors and

the number of code symbol errors. If the incomplete decoder detects more errors than the error

correcting capability of the code, then the errors are not corrected, otherwise they are.

This program inputs parameters from an ASCII data file with default name 'BlkDe-

cod.prm' and inputs the error sequence from the file with default name 'error.seq'. The decoded

error sequence is output to the 'error.seq' file and various statistics are output to an ASCII data

file with default name 'BlkDecod.ID', where ID is a three letter identifier for the current run

which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BlkDecod.prm' and selecting the appro-

priate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'error.seq' file which contains an error sequence (in packed format) with decoded

errors. The ' error.seq' file must exist prior to the execution of this program.

There is one important assumption associated with the output of this program. It is

assumed that the undetected word error probability is negligible. This is important because this

program does not implement an actual decoding algorithm, rather the decoded error sequence is

constructed by simply counting errors. Under certain circumstances, it is possible for the errors

to occur in such a way so that the received codeword is mapped to within a sphere of t (error

correcting capability of the code) about the wrong codeword. A decoding algorithm cannot

detect (all by itself) that error pattern because it thinks that only a few errors occurred which are
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thencorrectedto thewrongcodeword.Theprobability thatthiseventoccursis calledtheunde-

tectedword error probability. Thealgorithmimplementedherecannottell whetheranerrorpat-

tern is undetectableby a truedecodingalgorithm. Therefore,thisprobability isassumedto be

negligiblewhich is, in general,avalidassumption.

2. Viterbi

This program performs hard decision Viterbi decoding assuming the all zero sequence is

transmitted. The Viterbi decoding algorithm assumes that the trellis begins at the all zero state

for the first received code symbol. The end of the decoding process does not terminate with

flush bits. Instead, steady state Viterbi decoding is performed up to the end of the error sequence.

This program inputs parameters from an ASCII data file with default name 'Viterbi.prm'

and outputs the decoded error sequence to data file with default name 'error.seq'. In addition,

various statistics are output to an ASCII data f'de with default name 'Viterbi.ID', where ID is a

three letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'Viterbi.prm' and selecting the appropri-

ate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'error.seq' file which contains an error sequence (in packed format) with the

decoded error sequence. The ' error.seq' file must exist prior to the execution of this program.

There are several assumptions associated with the implementation and output of this program.

1) It is assumed that the all zero sequence is transmitted,

2) The path with the minimum Hamming distance at the i'h TreUis stage is used to f'md the
decoded bit for the output,

3) It is assumed that the convolutional encoder is either rate 1/2 or rate 1/3. It is straight
forward to extrapolate this program to accommodate a rate 1In encoder, however this

has not been done to date. It should also be possible to modify this program to accom-
modate a rate m[n eneoder using the concept of a punctured convolutional code, again
however, this has not been done to date.

The Viterbi algorithm, as implemented here, updates the Trellis by iterating through each

of the states at the next stage. The Hamming distance for each path entering a given state are

computed and the survivor is kept while the other sequence is discarded. In case of a tie, a coin

is flipped (via a Uniform RV in [0,1]) to determine the survivor. The survivor is identified by

updating the MLStateTrace array. This array contains the state of the previous Trellis stage

which connects to the given state being processed. For example, suppose that we are now pro-

cessing the next stage in the Trellis, we irtrst consider state 1 at the next stage. After investigat-
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ing theHammingdistancesfor thetwo possiblepathsenteringstate1,we find thatthesurvivor

pathcamefrom state3 of thepreviousTrellis stage.Therefore,MLStateTrace(i,1)= 3 wherei is

the stage index.

To prevent overwriting the Metric array, two Metric arrays are alternately processed for

each Trellis stage. This is why the algorithm performs two Trellis stage updates for each main

loop. In the first Trellis stage update, the metrics are found in array MetricA and the new metrics

are stored in MetricB. In the second Trellis stage update, the metrics are found in array MetricB

and the new metrics are stored in MetricA.

The Trellis is defined via three arrays; PathCodeSym, PathLink, and PathBit. Since this

program only accommodates rate 1/2 or 1/3 eneoders, only two paths enter each state at a given

trellis stage, therefore, if there are N trellis states, then there are only 2*N possible paths between

two trellis stages. These are sequentially numbered from 1 to 2*N where path number 1 and 2

enter state 1, path 3 and 4 enter state 2, etc. Array PathLink(i) gives the state number from

which path i originates. Also, PathCodeSym(i) gives the code symbol associated with path i, and

PathBit(i) gives the bit associated with path i. Taken together, these three arrays completely

define the steady state trellis.

B. Channel Error Sequences

The contract requires that several types of channel errors be considered. A program is

described which generates Binomial (random) errors which would occur if the channel noise was

additive white Gaussian noise (AWGN). Two other programs are described which generate

burst errors and bursty errors. These allow the error bursts to have a variety of length statistics

and occurrence statistics in addition to a variety of error density statistics.

1. BinErrs (Binomial Error Sequence generation)

This program generates an binary error sequence with binomially distributed errors. The

error sequence denotes a correct binary channel transmission with a 0 and denotes an error with a

1. The method used to generate the error sequence depends upon the density of errors to be gen-

erated. If the required density of errors is greater than 0.01, then the program uses a conditional

test on a uniform random number in the range [0,1]. If the density of errors is less than 0.01,

then the program uses a sample from the exponential distribution to generate the next error

occurrence time.
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Thisprograminputsparametersfrom anASCII datafile with defaultname'BinErrs.prrn'

andoutputstheerror sequenceto datafile with defaultname'error.seq'. In addition,various
statisticsareoutputto anASCII datafile with defaultname'BinErrs.ID', whereID is a three

letter identifier for thecurrentrun which is input from file 'ID.prm'.

Theprogramis runby editingtheparameterfile 'BinErrs.prm' andselectingtheappropri-

ateparametersandby choosingaprogramID byediting file 'ID.prm'. Executingtheprogram

generatesthe 'error.seq'file which containsanerrorsequence(in packedformat)with bino-

mially distributederrors. It doesnotmatterwhethertheoutputfile 'error.seq'existsor not. If it

exists, it is overwritten without a prompt to the user.

There are no assumptions associated with the implementation or output of this program.

2. BrstErrS (Burst Error Sequence generation)

This program generates a binary error sequence with burst errors. The error sequence

denotes a correct binary channel transmission with a 0 and denotes an error with a 1. The error

sequence is partitioned into two main, noncontiguous parts, the burst error part and the error free

part. The method used to generate the burst error part of the error sequence depends upon the

density of errors to be generated. If the required density of errors is greater than 0.01, then the

program uses a conditional test on a uniform random number in the range [0,1]. If the density of

errors is less than 0.01, then the program uses a sample from the exponential distribution to gen-

erate the next error occurrence time.

This program inputs parameters from an ASCII data file with default name 'BurstErrs.prm'

and outputs the error sequence to a data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'BurstErrs.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BurstErrs.prm' and selecting the appro-

priate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'error.seq' file which contains an error sequence (in packed format) with bino-

mially distributed errors. It does not matter whether the output file 'error.seq' exists or not. If it

exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow

error bursts to overlap. The user must take care to specify input parameters so that the probabil-

ity of overlapping bursts is negligible.



3. BstyErrs (Bursty Errors Sequence generation)
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This program generates an binary error sequence with bursty errors; that is, a combination

of random and burst errors. The error sequence denotes a correct binary channel transmission

with a 0 and denotes an error with a 1. The error sequence is partitioned into two main, noncon-

tiguous parts, the burst error part and the random error part. The method used to generate each

part of the error sequence depends upon the density of errors to be generated. For each error

sequence part, if the required density of errors is greater than 0.01, then the program uses a con-

ditional test on a uniform random number in the range [0,1]. If the density of errors is less than

0.01, then the program uses a sample from the exponential distribution to generate the next error

occurrence time.

This program inputs parameters from an ASCII data file with default name 'Burs-

tyErrs.prm' and outputs the error sequence to a data f'de with default name 'error.seq'. In addi-

tion, various statistics are output to an ASCII data file with default name 'BurstyErrs.ID', where

ID is a three letter identifier for the current run which is input from f'de 'ID.prm'.

The program is run by editing the parameter file 'BurstyErrs.prm' and selecting the appro-

priate parameters and by choosing a program ID by editing ftle 'ID.prm'. Executing the program

generates the 'error.seq' file which contains an error sequence (in packed format) with bino-

mially distributed errors. It does not matter whether the output f'de 'error.seq' exists or not. If it

exists, it is overwritten without a prompt to the user.

Even though Poisson distributed bursts may overlap in theory, this program does not allow

error bursts to overlap. The user must take care to specify input parameters so that the probabil-

ity of overlapping bursts is negligible. It is also assumed that P,_ < Pro.

C. Interleavers

The contract requires that block interleavers and periodic convolutional interleavers be

considered. To this end, a program is described which implements the effect of a block inter-

leaver and a separate program is described which implements the effect of a periodic convolu-

tional interleaver. Also, there are two versions of each program. The two versions implement

the same operation but trade off computer code complexity for execution speed.
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1. BlockInt (Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file 'error.seq'.

It is assumed that the channel symbols corresponding to those errors have already been inter-

leaved using an (C,R,m) block interleaver. The deinterleaver groups every m error sequence val-

ues together and deinterleaves them as a group. The method used to implement the function of

the block interleaver is to read in a block of the error sequence and to use a series of formulas to

perform the block deinterleaving. These formulas are described below.

Let bx denote the error sequence input to the deinterleaver and let d L denote the error

sequence output by the deinterleaver. Note: the subscripts are assumed to be incremented start-

ing with zero. Then b x is read into the deinterleaver memory array (by columns) at location:

Symbol index = int(K]m) == Y
Row of bx = Mod(Y,R) == i
Column of b x = int(Y/R) == j
Depth of bx = MOd(K,m) == p

Given i, j, and p the deinterleaved value location (read out by rows) is found to be

L = rn * (i*C+j) + p

The implementation found below actually calculates K given L. The actual value b x is

found in a buffer which is loaded with error sequence values. The calculation is as follows:

1) L points to location BuffL in the buffer, BuffL = Mod(L,BuffLength)

2) The interleaved location for BuffL is BuffK where

ll = Mod(BuffL,m)
X = BuffI./m

BuffK = m * (R*MOd(X,C) + int4(X/C)) + ll

where BuffLength=R*C*m. Note that there is a problem deinterleaving the end of the 'error.seq'

file due to a possible partial interleaver block at the end of the sequence. The program attempts

to partially deinterleave this last partial block. An error sequence could be zero padded to f'fll a

partial block, thereby changing slightly the overall error statistics.

This program inputs parameters from an ASCII data file with default name 'BlockInt.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'BlockInt.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.
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Theprogramis runby editingtheparameterfile 'BlockInt.prm' andselectingtheappropri-

ateparametersandby choosingaprogramID by editingftle 'ID.prm'. Executingtheprogram

generatesthe 'error.seq'f'dewhichcontainsanerrorsequence(in packedformat)with deinter-

leavederrors. The 'error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

2. BlkArr (Alternate Block Deinterleaver)

This program performs block deinterleaving of the error sequence found in file 'error.seq'.

It is assumed that the channel symbols corresponding to those errors have already been inter-

leaved using an (C_,m) block interleaver. The deinterleaver groups every m error sequence val-

ues together and deinterleaves them as a group. The method used to implement the function of

the block interleaver is to read in a block of the error sequence into a buffer which mimics the

block interleaver memory array. The error sequence is read in by rows and deinterleaving is per-

formed by reading the error sequence out by columns.

This program inputs parameters from an ASCII data file with default name 'BlockInt.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data f'de with default name 'BlockInt.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'BlockInt.prm' and selecting the appropri-

ate parameters and by choosing a program ID by editing f'de 'ID.prm'. Executing the program

generates the 'error.seq' file which contains an error sequence (in packed format) with deinter-

leaved errors. The ' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

3. DPCI (Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file 'error.seq'. It is

assumed that the channel symbols corresponding to those errors have already been interleaved

using an (Ntaps,M) periodic convolution interleaver. The method used to implement the function

of the periodic convolutional interleaver is a series of formulas as described below. These func-

tions are applied to a portion of the error.seq array which is stored in a ring buffer.

Let b x denote the error sequence input to the DPCI and let dL denote the error sequence

output by the DPCI. Then the index L relates to the index K as follows,
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K= Mod((L- 1),Ntaps) * M * Ntaps + L

Note that there is a problem deinterleaving the end of the 'error.seq' file due to the sequen-

tial nature of the algorithm. The DPCI error sequence file is truncated to eliminate the "don't

cares".

This program inputs parameters from an ASCII data file with default name 'DPCI.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'DPCI.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter f'_e 'DPCI.prm' and selecting the appropriate

parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program gen-

erates the 'error.seq' file which contains an error sequence (in packed format) with deinterleaved

errors. The ' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

4. DPCIAIt (Alternate Periodic Convolutional Deinterleaver)

This program performs deinterleaving of the error sequence found in file 'error.seq'. It is

assumed that the channel symbols corresponding to those errors have already been interleaved

using an (n,M) periodic convolution interleaver. The method used to implement the function of

the periodic convolutional interleaver is a series of formulas as described below.

Let b; denote the error sequence input to the DPCI and let dj denote the error sequence out-

put by the DPCI. Then the index j relates to the index i as follows,

j = i - [(i-1) mod n]*M*n

Note that there is a problem deinterleaving the end of the 'error.seq' file due to the sequen-

tial nature of the algorithm. For this case, the 'error.seq' file is filled with zeroes for those dein-

terleaved positions which result from locations which are beyond the end of the 'error.seq' file.

This program inputs parameters from an ASCII data file with default name 'DPCI.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'DPCI.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.
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Theprogramis run byediting theparameterfile 'DPCI.prm' andselectingtheappropriate

parametersandby choosingaprogramID byediting file 'ID.prm'. Executingtheprogramgen-

eratesthe 'error.seq' file whichcontainsanerror sequence(in packedformat)with deinterleaved

errors. The ' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

D. Error Sequence Analysis

The contract requires that error sequence be characterized. This amounts to modeling the

errors by a predefined mathematical model. Several mathematical models are considered; one

which models the errors as bursty errors, and one which models the errors as burst errors. Bursty

errors are characterized by errors which occur within bursts as well as errors which occur outside

bursts. Burst errors are characterized by errors which occur only within bursts. In addition, two

programs have been written to implement distribution tests for the purpose of determining if an

error sequence, or a segment of an error sequence, resulted from random errors.

1. CVMseq (Cramer Von-Mises sequence distribution test)

This program uses the Cramer Von-Mises (CVM) distribution test to determine whether

the error sequence (in default file 'error.seq') is binomially distributed with confidence level

alpha. The method implemented is simple. The error sequence is read in by blocks and the over-

all CVM test statistic is calculated. At the end of the program, the test statistic for the complete

sequence along with a preselected set of critical values is output to the user. The results are also

output to 'CVMseq.ID' file where ID is a three letter identifier for the current run which is input

from file 'ID.prm'.

Executing the program causes the 'error.seq' file to be read which contains an error

sequence (in packed format). The 'error.seq' file must exist prior to the execution of this pro-

gram. There are no assumptions associated with the implementation or output of this program.

2. CVMblk (Cramer Von-Mises distribution test on error sequence blocks)

This program uses the Cramer Von-Mises (CVM) distribution test to determine whether

the error sequence (in default file 'error.seq') is binomially distributed with confidence level

alpha. The error sequence is read in by blocks and the CVM test statistic is calculated for each
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block. At theendof theprogram,theteststatisticsfor eachblockalongwith a preselectedsetof

critical values are ordered and output to the user. The results are also output to 'CVMblk.ID' file

where 113 is a three letter identifier for the current run which is input from file 'ID.prm'.

Executing the program causes the 'error.seq' file to be read which contains an error

sequence (in packed format). The ' error.seq' file must exist prior to the execution of this pro-

gram. There are no assumptions associated with the implementation or output of this program.

3. DeltaEst (Bursty-error parameter estimation via the A method)

This program estimates parameters associated with a bursty error sequence. The method

employed segments the error sequence into random error regions and burst error regions. The

algorithm implemented operates on the error sequence iteratively. For each iteration, the algo-

rithm is either tracking a burst segment or a random segment. At each iteration, the error

sequence interval to the next error is found. If the algorithm is tracking a random segment, then

an attempt is made to begin a burst by comparing the error density for the i'h interval (surrounded

by 2 errors which gives an effective error density of 2/[interval+2]) with a threshold (Delta). If

the error density for the t'h interval is greater than Delta, then the algorithm begins tracking a

burst segment, if not then the random segment is continued. If the algorithm is tracking a burst

segment, then the segment is continued until the error density within the total burst segment falls

below the threshold, Delta. In this way, the entire sequence is partitioned. Initializing the pro-

cesses is particularly troublesome because of the various combinations for the beginning of the

error seq.

This program inputs parameters from an ASCII data file with default name 'DeltaF_,st.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data f'de with default name 'DeltaEst.ID', where ID is a three

letter identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'DeltaEst.prm' and selecting the appropri-

ate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'error.seq' f'de which contains an error sequence (in packed format) with deinter-

leaved errors. The "error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.
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This program calculates the error interval probability density function for an error

sequence. The error sequence is partitioned into error free segments and a histogram of the inter-

val length calculated. Note that the two error free intervals occurring at the beginning of the

error sequence and at the end are ignored. Only intervals between errors are counted.

The program outputs the histogram to file 'Interval.hst' which (for now) is an ASCII file

with each histogram value stored per record. For each record, the interval index appears first fol-

lowed by the probability of occurrence.

Note that there are NO parameters to be read in for this program. However, various statis-

tics are output to an ASCII data file with default name 'intvHst.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'.

The program is run by editing the parameter file 'IntvHst.prm' and selecting the appropri-

ate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

generates the 'Interval.hst' file which contains the histogram of the error intervals found in the

error sequence. The ' error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

5. GAPEst (fixed GAP burst error distribution Estimation)

This program estimates parameters associated with a bursty error sequence. The method

employed segments the error sequence into error free regions and burst error regions. A burst

error region is def'med to be a region which contains errors no two of which are separated by

more than the prespecified GAP number of error free symbols. In addition, the burst error region

is preceded and followed by error free regions of minimum width specified by GAP. The algo-

rithm implemented operates on the error sequence iteratively. For each iteration, the algorithm

determines the width of the next error free interval, if it is less than GAP then the next error is

included in the current burst, if it is greater than GAP then the previous burst is terminated and

the next burst is started. In this way, the entire sequence is partitioned. If the first error sequence

value is a '0' then the process always begins with an error free region. If the first error sequence

value is a ' 1' then the process always begins with an error burst.
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This program inputs parameters from an ASCII data file with default name 'GAPEst.prm'

and outputs the error sequence to data file with default name 'error.seq'. In addition, various

statistics are output to an ASCII data file with default name 'GAPEst.ID', where ID is a three

letter identifier for the current run which is input from f'fle 'ID.prm'.

The program is run by editing the parameter f'de 'GAPEst.prm' and selecting the appropri-

ate parameters and by choosing a program ID by editing file 'ID.prm'. Executing the program

causes the 'error.seq' file to be read which contains an error sequence (in packed format). The

'error.seq' file must exist prior to the execution of this program.

There are no assumptions associated with the implementation or output of this program.

E. Utilities

Several utilities have been developed to support CLEAN. The makefile given in the fol-

lowing section can be used to compile the source code with a single command by typing 'make

all'. The programs which follow allow the user to compare error sequences, set error sequences,

and display error sequences.

1. Make Utility for Lahey Fortran v5.0

FFLAGS = /3 /B /nAl /el /P /R /Zl

CorrCW _ CorrCW.obj Unpack.ob] Pack.ob 3

GaussRV = GaussRV.ob 3 UnifRV.ob3

IterBin = IterBln.ob 3 UnlfRV.ob 3

LdBuffl = LdBuffl.ob 3 Unpack.ob3

LdBuff4 = LdBuff4.ob 3 Unpack.ob 3

NextBrst = NextBrst.ob 3 UnlfRV.obj GaussRV.ob3

NextInt = Nextlnt.ob 3 LdBuff4.ob 3

NextLnth = NextLnth.ob 3 UnifRV.ob 3 GaussRV.ob 3

SvBuffl = SvBuffl.ob 3 Unpack.ob 3 Pack.ob 3

SvBuff4 = SvBuff4.ob3 Unpack.ob 3 Pack.ob3

TotalPe = TotalPe.ob 3 Unpack.ob 3

ALL : BinErrs BlkArr BlkDecod Blocklnt BrstErrs \

BstyErrs CompSeq CVMblk CVMseq DeltaEst DisplFil DlsplSeq \

DPCI DPCIOId GAPest IntvHst SetErrs

BINERRS : BINERRS.ob] $(IterBin) Pack.ob3 UnifRV.ob 3

©ptlink BINERRS.ob3 $(IterBin) Pack.ob 3 UnlfRV.ob], \

BINERRS.exe,,c:\compller\lahey\F77L.LIB

BLKARR : BLKARR.ob3 $(LdBuffl) $(SvBuffl) DispBuf[.ob 3

©ptlink BLKARR.ob 3 $(LdBuffl) $(SvBuffl) DispBufl.ob], \

BLKARR.exe,,c:\compller\lahey\F77L.LIB

BLKDECOD : BLKDECOD.ob3 $(LdBuff4) $(CorrCW)

Optlink BLKDECOD.ob3 $(LdBuff4) $(CorrCW), \

BLKDECOD.exe,,c:\compiler\lahey\F77L.LIB

BLOCKINT : BLOCKINT.ob 3 $(LdBuffl) $(SvBuffl) Pac_.ob 3

Optllnk BLOCKINT.ob3 $(LdBuffl) $(SvBuff!) Pack.ob3, \

BLOCKINT.exe,,c:\compller\lahey\F77L.LIB

BRSTERRS : BRSTERRS.ob 3 $(IterBin) Pack.ob 3 UnifRV.ob] $(Ne×tBrst

Optlink BRSTERRS.obj $(IterBin) Pack.obj UnifRV.ob 3 $(NextBrst

BRSTERRS.exe,,c:\compller\lahey\F77L.LIB

BSTYERRS : BSTYERRS.ob 3 $(IterBin) Pack.ob 3 UnifRV.ob 3 $(NextBrst

©ptlink BSTYERRS.ob] $(IterBin) Pack.ob 3 UnifRV.ob 3 $(NextBrst

BSTYERRS.exe,,c:\compller\lahey\F77L.LIB

$(NextLnth)

$(Ne×tLnth) , \

S(NextLnth)

$(NextLnth) , \
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COMPSEQ: COMPSEQ.ob] Unpack.obj

Optlink COMPSEQ.ob3 Unpack.ob_, \

COMPSEQ.exe,,c:\compller\lahey\F77L.LIB

CVMblk : CVM-blk.ob 3 $(LdBuff4) RdStats.obj

Optllnk C_/Mblk.ob3 $(LdBuff4) RdStats.obj, \

CVMblk.exe,,c:\compiler\lahey\F?TL.LIB

CVMseq: CVMseq.obj $(LdBuff4) $(Nextlnt) RdStats.obj

Optlink CVMseq.ob] $(LdBuff4) $(NextInt) RdStats.ob], \

CVMseq.exe,,c:\compller\lahey\F77L.LIB

DELTAEST : DELTAEST.obj $(LDBuff4) $(NextInt) $(TotalPe)

Optlink DELTAEST.obj $(LDBuff4) $(NextInt) $(TotalPe) , \

DELTAEST.exe,,c:\compller\lahey\F77L.LIB

DISPLFIL : DISPLFIL.obj Unpack.ob]

Optlink DISPLFIL.obj Unpack.ob3, \

DISPLFIL.exe,,c:\compiler\lahey\F77L.LIB

DISPLSEQ: DISPLSEQ.obj Unpack.ob 3

Optlink DISPLSEQ.obj Unpack.ob], \

DISPLSEQ.exe,,c:\compller\lahey\F77L.LIB

DPCI : DPCI.obj Unpack.ob] Pack.obj

Optlink DPCI.ob 3 Unpack.obj Pack.obj, \

DPCI.exe,,c:\compiler\lahey\F77L.LIB

DPCIOLD : DPCIOLD.obj Unpack.ob 3 Pack.obj

Optlink DPCIOLD.obj Unpack.ob 3 Pack.ob_, \

DPCIOLD.exe,,c:\compiler\lahey\F77L.LIB

GAPEST : GAPEST.ob3 $(LdBuff4) $(NextInt)

Optlink GAPEST.ob] $(LdBuff4) $(NextInt) , \

GAPEST.exe,,c:\compller\lahey\F77L.LIB

[ntvHst : [ntvHst.ob 3 $(LDBuff4) $(Nextlnt)

Optlink IntvHst.ob 3 $(LDBuff4) $(NextInt) , \

IntvHst.exe,,c:\compller\lahey\F77L.LIB

SETERRS : SETERRS.obj Pack.ob 3

Optlink SETERRS.obj Pack.ob3, \

SETERRS.exe,,c:\compller\lahey\F77L.LIB

BINERRS.ob] : BINERRS.for

F77L BINERRS.for $(FFLAGS)

BLKARR.ob3 : BLKARR.for

F77L BLKARR.for $(FFLAGS)

BLKDECOD.obj : BLKDECOD.for

F77L BLKDECOD.for $(FFLAGS)

BLOCKINT.ob_ : BLOCKINT.for

F77L BLOCKINT.for $(FFLAGS)

BRSTERRS.obj : BRSTERRS.for

F77L BRSTERRS.for $(FFLAGS)

BSTYERRS.ob3 : BSTYERRS.for

F77L BSTYERRS.for $(FFLAGS)

COMPSEQ.ob 3 : COMPSEQ.for

F77L COMPSEQ.for $(FFLAGS)

CVMblk.obj : CVMblk.for

F77L CVMblk.for $(FFLAGS)

CVMseq.obj : CVMseq.for

F77L CVMseq.for $(FFLAGS)

CorrCW.ob 3 : CorrCW. for

F77L CorrCW.for $(FFLAGS)

DELTAEST.obg : DELTAEST.for

F77L DELTAEST.for $(FFLAGS)

DlspBufl.ob3 : DispBufl.for

F77L D1spBufl.for $(FFLAGS)

DlspBuf4.obj : DispBuf4.for

F77L DispBuf4.for $(FFLAGS)

DISPLFIL.ob 3 : DISPLFIL.for

F77L DISPLFIL.for $(FFLAGS)

DISPLSEQ.ob3 : DISPLSEQ.for

F77L DISPLSEQ.for $(FFLAGS)

DPCI.ob3 : DPCI.for

F77L DPCI.for $(FFLAGS)

DPCIOLD.ob3 : DPCIOLD.for

F77L DPCI©LD.for $(FFLAGS)
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GAPEST.ob3 : GAPEST.for

F77L GAPEST.for $(FFLAGS)

GAUSSRV.obj : GAUSSRV.for

F77L GAUSSRV. for $(FFLAGS)

IntvHst.ob3 : intvHst.for

F77L IntvHst.for $(FFLAGS)

ITERBINoObj : ITERBIN.for

F77L ITERBIN. for $(FFLAGS)

LDBUFFI.obj : LDBUFFI.for

F77L LDBUFFI.for $(FFLAGS)

LDBUFF4.obj : LDBUFF4.for

F77L LDBUFF4.for $(FFLAGS)

NEXTBRST.ob3 : NEXTBRST.for

F77L NEXTBRST.for $(FFLAGS)

NEXTINT.ob 3 : NEXTINT.for

F77L NEXTINT.for $(FFLAGS)

NEXTLNTH.ob 3 : NEXTLNTH.for

F77L NEXTLNTH.for $(FFLAGS)

PACK.obj : PACK.for

F77L PACK. for $(FFLAGS)

RdStats.obj : RdStats.for

F77L RdStats.for $(FFLAGS)

SETERRS.ob3 : SETERRS.for

F77L SETERRS.for $(FFLAGS)

SVBUFFI.obj : SVBUFFI.for

F77L SVBUFFI.for $(FFLAGS)

SVBUFF4.ob_ : SVBUFF4.for

F77L SVBUFF4.for $(FFLAGS)

TotalPe.obj : TotalPe.for

F77L TotalPe.for $(FFLAGS)

UNIFRV.ob 3 : UNIFRV. for

F77L UNIFRV. for $(FFLAGS)

UNPACK.ob3 : UNPACK.for

F77L UNPACK.for $(FFLAGS)

2. CompSeq (Compare Sequence)

This program compares two error sequences and identifies those error locations where the

two are different. The user is prompted for the two error sequence filenames. It is assumed that

the errors stored in error.seq are in the DBESS (Double Byte Error Sequence Symbol) packed

format.

3. SetErrS (Set Error Pattern)

This program interactively allows the user to input an error sequence. All parameters and

the error sequence are input directly from the user so that there is no parameter file associated

with this program. The errors are stored in the DBESS packed format.

There are no assumptions associated with the implementation or output of this program.
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4. DisplSeq (Display Default Error Sequence)

This program displays the error sequence found in f'rle 'error.seq'. It is assumed that the

errors stored in error.seq are in the DBESS packed format.

5. DisplFil (Display Error Sequence from user File)

This program displays the error sequence found in a file specified by the user. It is

assumed that the errors stored in the file are in the DBESS packed format.
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To enhance the research efforts at both MSU and NASA GSFC, several interrelated capa-

bilities have been established. The first author visited GSFC in August of 1992 to learn how to

use the Communications Link And System Simulation (CLASS) software tool. CLASS per-

forms a signal level simulation of the TDRS downlink and predicts coded system performance

using theoretical analysis. In addition, the first author learned how to use the OMV bit-by-bit

simulator which uses the same signal level simulation nucleus as CLASS but also incorporates

actual deinterleaving and decoding algorithms to simulate the operation of the deinterleavers and

decoders at White Sands. After learning how to use these software tools, analyst level access

was granted and has been established. It is now possible for MSU personnel to exercise CLASS

and the OMV bit-by-bit simulator remotely from MSU via internet. MSU appreciates the sup-

port given by the NASA/GSFC CLASS group.

Furthermore, real EOS Ku-band downlink data (validity of the data pending) has been

acquired by Victor Sank at GSFC. A program was written to convert from the GSFC error

sequence data format into the format required by CLEAN. Since these data files are sometimes

rather large which requires large storage spaces, a second program was written to archive the

GSFC data using run length encoding, a Iosstess compression scheme. For an error sequence

with an error probability of 103, this provides about 3:1 lossless compression. For an error

sequence with an error probability of 10 .4, this provides about 30:1 lossless compression. In

addition, a third program was written to unarchive the run length encoded data into the DBESS

format required by CLEAN. Mr. Sank's help has been invaluable to this project.

A. EOS Real Error Sequence Data conversion program

This program inputs the real EOS downlink data obtained from Victor Sank and converts it

into the DBESS packed format required by the programs in CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.

B. Error Sequence Archiver using Run Length Encoding

This program inputs the real EOS downlink data obtained from Victor Sank and converts it

into an archival format. The archival format only stores the location of each error in the file.

This is not the format which is necessary for CLEAN. Another program called SeqUnarc can be

executed to convert from the Archival format to the DBESS format required by CLEAN.
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It is assumed that the input file accessed by this program exists prior to its execution.

C. Error Sequence Unarchiver

This program inputs data in the archival format (run length encoding) via the SeqArc pro-

gram and unarchives it to the DBESS format required by CLEAN.

It is assumed that the input file accessed by this program exists prior to its execution.
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The problem of interest is that of choosing/evaluating a good forward error correcting cod-

ing (F'EC) scheme for the Ku-band TDRS downlink which will be used for the Earth Observation

System (EOS). There are many issues to be considered when choosing a "good" FEC including

required error probability, required data rate, and data loss during synchronization cycles just to

name a few.

For example, suppose it is proposed to use a (255,223) Reed-Solomon (RS) code with a

block interleaver for the 150Mbps Ku-band TDRS downlink. If this code meets the required

error probability, say 10 "s, for the types and density of errors anticipated on the link and ff it can

accommodate the required data rate, 150Mbpsx(223/255)=131Mbps, then this code can be con-

sidered acceptable. If the decision is made to concatenate a rate 1/2 convolutional encoder and

periodic convolutional interleaver with the RS code and block interleaver, then several undesir-

able side effects will take place. First, the hardware complexity will increase which will increase

cost, size, weight, power, etc. Second, the periodic convolutional deinterleaver and Viterbi

decoder at the receiver must synchronize to the received data. The synchronization process can

result in significant data loss. In addition, the convolutional code rate results in a decrease in the

system data rate to 131Mbpsx(1/2)=65.6Mbps, assuming a fixed channel rate. Although this

concatenated scheme may provide a lower error probability which exceexls the requirement, it is

achieved at a significant cost. Therefore, the studies developed for this contract focus on deter-

mining and evaluating the minimum complexity coding scheme for EOS to satisfy the system

requirements. This requires an understanding of the nature of the Ku-band downlink errors and

of the achievable performance for various coding schemes in various types of error environ-

ments.

To this end, the research is being focussed along two main lines as discussed in the follow-

hag sections.

A. Research Focus 1

First, the nature of the downlink errors is being investigated. The expected results are a

consequence of discussions with NASA/GSFC and STEL personnel concerning the nature of the

Ku-band downlink errors. The expected results are:

1) Determine that the expected errors which occur in a received block of data are not ran-

dom. This is accomplished by applying the Cramer Von-Mises distribution test (see

CVMblk in Section 1:11.D.2) to the actual data.



25

2) Estimatetheerrorparametersfor theactual channel data assuming that the errors are

bursty in nature. These will be estimated by applying the bursty-error parameter esti-

mation via the A method (see DeltaE, st in Section III.D.3) to the actual data. It is

expected that the burst locations follow a Poisson distribution. The estimated parame-

ters are:

a) Average rate of burst occurrence and the burst occurrence interval probability

density function (pdjO. It is expected that this pdfis exponential which means

that the burst locations follow a Poisson distribution.

b) The average burst length (in channel symbols) and the burst length pdf. It is

expected the variance of this pdfis small.

e) The average error density during the bursts and the burst error density pdf. It is

expected that the variance of this pdfis small.

d) The average error density outside the bursts. It is expected that this error density

will be very nearly the random error rate.

Because the actual data has not been received to date, this work has not been completed.

B. Research Focus 2

The second focus of this research is the investigation of performance for various coding

schemes in a bursty-error environment. The expected result will be plots similar to the one

shown in Figure 2. Several coding schemes will be considered including:

1) Reed-Solomon (RS)

2) RS, block interleaver (interleave depth of 5)

3) RS, block interleaver (interleave depth of 8)

4) RS outer code, block interleaver (interleave depth of 5), convolutional inner code

5) RS outer code, block interleaver (interleave depth of 5), convolutional inner code, peri-

odic convolutional interleaver.

The curves drawn are for illustration only but do indicate to some degree the expected shape.

The error ratio R_, as defined in this research, is

Total Random Errors

R_ - Total Errors
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Figure 2. An expected outputperformance data product (forillustrationonly).
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To constructFigure 2, a channel errorprobability,P (Ech),ischosen. For each possibleerrorram,

thebursty-errorparameters are calculatedand CLEAN isused to calculatethedecoded error

probability.For example, tosimulatesystem (5)identifiedabove,the followingprograms arc

sequentiallyexecuted:

I) BstyErrs (seeSectionm.B.3)

2) DPCI (seeSectionWI.C.3)

3) Viterbi(seeSectionIII.A.2)

4) Blocklnt (seeSectionm.c.1)

5) BlkDecod (see Section I"[I.A. 1)

The input parameters must bc chosen and input to the appropriate parameter files. The choice

for the inputparameters arediscussedin the followingsection.The file'BlkDecod.ID' where

ID isthe 3 letteridentifierfound in file'ID.prm' gives the finaldecoded errorprobability.Note

thatCLEAN performs a Monte Carlo simulation.

Itisexpected thattheactualplot,similartothatshown inFigure 2,willshow thatthe

Reed-Solomon code used with a block intcrleavcr(interleavedepth of 5) issufficienttoprovide

therequireddecoded errorprobabilityand, therefore,constitutesthe "best"coding scheme.

To date,about 10% of the actualplothas bccn developed forthe choiceof parametersdis-

cussed in the followingsection.The requiredexecutiontime of some of theprogams isorLthe

order of hours per datapointfor a SPARC workstation.

C. Choosing System Parameters

Of interest in this research are performance results for codes which are used for space

based communication systems. The Consultative Committee for Space Data Systems (CCSDS)

[ 1] defines a concatenated coding scheme for space based communication systems consisting of

a (255,223) RS outer code followed by an interleaver and a rate 1/2 constraint length 7 convolu-

tional inner code. Therefore, these are the code parameters chosen for study in this research. To

summarize

1) Reed-Solomon code (BlkDecod program)

a) Blocklength, n=255

b) Information codeword length, k=223

c) Number of binary symbols per codeword, m=8

c) Error correcting capability, t=-16 code symbols per codeword

2) Convolutional code (Viterbi program)
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a) Constraintlength,K=7

b) Number of code generators, 2 (code rate = 1/2)

c) Tap weights for code generator #1,1011011

d) Tap weights for code generator #2, 1111001

e) Number of constraint lengths for decoder memory, 4

Also of interest are the interleaver parameters. The Framing and Multiplex Equipment

(FAME) defines a standard architecture for space based communication systems which involves

multiplexing 8 (only 5 are utilized) data streams together to form a single data stream for trans-

mission to earth. This results in a block interleaving effect for the demultiplexed data input to

the RS decoder. Therefore, the block interleaver imitates the multiplex operation. For the

(255,223) RS code defined above, this requires the block interleaver parameters to be chosen as

3) Block interleaver (BlockInt)

a) Number of rows, 5 (This is alternately chosen to be 8)

b) Number of columns, 255

c) Number of binary symbols per memory array element, 8

In addition, the periodic convolutional interleaver currently used has parameters given by

4) Periodic Convolutional Interleaver (DPCI')

a) Number of taps, 30

b) Number of delays for the 2 *d tap, 2

The only parameters remaining to be specified are the bursty-error parameters. This

requires choosing the burst duration pdfbe chosen along with the mean and possibly the vari-

ance, the burst location pdf be chosen along with the mean and possibly the variance, the error

density within the bursts, and the error density outside the bursts. These parameters must be cho-

sen for the given raw channel error probability, P(ech), and for each possible value for the error

ratio.

It is known that the Ku-band downlink is characterized by essentially error free transmis-

sion interrupted by short, fixed periods of high interference. The interference is probably less

than 0.31xsec in duration. Although the average time between error bursts is unknown, the duty

cycle of the interference is probably less than 0.025. Given this information, a worse case see-

nario can be constructed. If the worse case interference duration is 0.3_see and the channel sym-

bol rate is 75Mbps (2 binary symbols per channel symbol for QPSK gives rise to the required

150Mbps), then (0.3x106)(75x106bps)(2bits]channel symbol)---45 binary symbols is the length of

each error burst. As an aside, it is easy to determine that a (255,223) RS code with a depth 5
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block interleavercancorrectan error burst of 45 binary symbols. However, it is possible for

multiple error bursts to occur within one interleaved block. In light of this characterization,

some of the bursty-error parameters are chosen as follows

5) Bursty-error Generation (BstyErrS)

a) Burst occurrence location pdf, Int'vFlag=3 (Poisson)

b) Burst occurrence interval mean, IntvMean---4500 binary symbols

c) Burst occurrence durationpdf, LngthFlag=l (Fixed)

d) Burst occurrence duration mean, LngthMean=45 binary symbols

The only two parameters remaining to be chosen are the error probability during the error bursts,

P,b, and the error probability outside the error bursts, P,r Choosing these is more involved than

the previous parameters because they must be calculated for the predefmed raw channel error

probability, P (ech), and because they must be changed to adjust the error ratio.

The method for calculating P,b and P,s in terms of P(Ech) and Re is as follows. From [2],

the raw channel error probability for a bursty-error channel is given by

P (ech) = P,g(1 - d/My) + P,b(dlMv)

where M_ is the average interval between error bursts (denoted IntvMean in part 4.b above) and

where d is the burst duration (denoted LngthMean in part 4.d above). The error ratio can be

expressed in terms of these symbols to be

e.g(1 -dlM )
R e -

P(_,h)

Solving the previous two equations for Pe_ and P,b gives

P -
"g 1 -d/Mv

and

MV

P_ = ---f (1 - R_)P (ech)

These are valid provided P,_ > Peg. Note that for given values of d and My, it is generally not

possible for the error ratio to take on all values from 0 to 1. Clearly, P,8 < Pea < 1/2, from which

it can be determined that
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0<
P(E_h) -dl(2Mv)

<R_< I-d/M,,< I

which implies that we must have

d

2My

Note that if we choose P (ech) = dl(2Mv) then it is possible to achieve a range for the error ratio of

0 < Re < 1 by selecting appropriate values for P_g and P_b.
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Abstract

In February of 1993, real error sequence data from the Ku-band downlink was obtained

from NASA/GSFC. The data consists of the error sequence found at the NRZM decoder output.

Along with theoretical results, some processing of this data has been completed and is reported

in this document.

In this report, performance evaluation of various coding schemes operating on bursty

errors is described along with results on studies relating to the acquired Ku-band downlink data.

It is shown that the errors resulting from the Ku-band downlink through TDRS are characterized

by random errors at the demodulator output which give rise to random occurrences of error pairs

at the NRZM decoder output. This conclusion is drawn by (1) comparing the empirical error

interval distribution from the real EOS data to the theoretical error interval distribution assuming

random occurrences of error pairs at the NRZM decoder output, and (2) performing the CVM

distribution test on a subset of the real data.

In addition to this, results of a study investigating the performance of the (255,223) Reed-

Solomon (RS) code on bursty errors is presented. It is shown that the (255,223) RS code with a

depth 5 block interleaver is efficient at correcting bursty errors ff the burst durations are less than

about 75 binary symbols for a burst duration/rate constant vd _ 0.01. Furthermore, comparison

of various coding schemes operating on random occurrences of error pairs shows that the

(255,223) RS code can achieve the required lff s decoded error probability with an error proba-

bility at the demodulator output of 10 "2"s using errors-only decoding and 10 "__ using erasure

decoding.

A brief study dealing with synchronization for the CCSDS transfer frame format which

includes a 32 bit PN sequence header shows that achieving synchronization will not be a prob-

lem as long as the raw channel error probability is less than about 0.1. Finally, a section is

included which gives a brief description of additional capabilities which have been developed for

the Communications Link and Error ANalysis (CLEAN) simulation program.
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I. INTRODUCTION

This report describes research performed to date on NASA Grant NAG5-2006 for the

period August 16, 1992 through March 30, 1993. This work involves characterizing errors

exhibited by the Ku-band downlink through the Tracking and Data Relay Satellite (TDRS)

which is to be used for the Earth Observation System (EOS). Also involved in this work is a

performance study of various forward error correcting coding schemes on anticipated burst

errors.

For the period August 16, 1992 to December 30, 1992, a simulation was developed, called

the Communication Link Error ANalysis (CLEAN), to

1) simulate typical errors which may occur in the EOS downlink,

2) simulate/implement various error correcting codes including Reed-Solomon and Con-

volutional codes,

3) analyze error sequence data.

A description of the work performed can be found in the fh'st semi-annual report [1]. The devel-

opment of a simulation tailored to the EOS downlink was necessary to investigate issues which

do not lend themselves to theoretical analysis and also to be used as a tool to study actual EOS

downlink error data acquired by NASA Goddard Space Flight Center (GSFC).

For the period January 1, 1993 to March 30, 1993, the work accomplished includes

1) the continuing development of that simulation,

2) partial results from the error correcting coding study on anticipated (bursty) EOS

downlink errors,

3) partial results on the study to characterize the errors resulting from the actual EOS

downlink data acquired by NASA/GSFC.

4) results on a study initiated to investigate synchronization issues, including estimates of

the average data loss before synchronization is achieved for the actual EOS downlink

data.

This work, except for the synchronization study, directly addresses items (A) through (D) in the

statement of work for this contract, proposal number 92-3-272, Mississippi State University.

Section II of this report describes the study of the actual EOS downlink data. Section III

describes the Ku-band code performance results followed by Section IV which describes the syn-

chronization study. Finally, Section V describes additional developments of CLEAN.



II. TDRS Ku-BAND ERROR CHARACTERISTICS FOR EOS
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The Consultative Committee for Space Data Systems (CCSDS) has established a data

transfer frame format to be used for space based communication systems [2]. A prototype Wide-

band Transfer Frame Formatter (WTFF), used to consa'uct CCSDS transfer frames, was built at

NASA/GSFC and used to derive error sequence data for the Ku-band return link through TDRS

in June 1992 [3].

A simplified block diagram of the Ku-band return link is shown in Figure I. The CCSDS

transfer frames were sent through the uplink via the Ku-band using one arm of a Quadrature

Phase Shift Keyed (QPSK) modulation scheme, and then echoed back to the White Sands

Ground Terminal (WSGT) through TDRS. The signal experienced noise and possible Radio

Frequency (RF) interference before being received and demodulated at WSGT. The actual data

is represented by binary transitions, i.e. a binary "1" is represented by a binary transition, "01" or

"I0", and a binary "0" is represented by no binary transition, "00 '° or "11". The NRZM decoder

converts the received binary sequence into the data sequence. For the tests conducted, only a

Reed-Solomon code was used instead of the CCSDS standard Reed-Solomon/convolutional con-

catenated code [4].

The error sequence files received represent the errors at the NRZM decoder output. Each

received error sequence file was converted to the format required by CLEAN using program

EOSCONV [I]. As shown in Table I, a total of 16 error sequence fLieS were received by MSU

from NASA/GSFC with error probabilities ranging from roughly 10 .2 to 10 "6. The fdes range in

size from 260kbytes to 33.SMbytes representing error sequences from 2x106 binary values to

2.6xi0 s binary values. However, an anomaly in the data, described in Section C below, was dis-

covered after the data was processed. After discussions with Victor Sank at GSFC, it became

evident that the data processed for this report tr_y not be valid. In any case, we present our

findings below for completeness.

To summarize, we found the data to contain random occurrences of error events where

each error event consists of two consecutive errors, subsequently called a double error. Since the

NRZM decoder will output a double error for each single error input, we conclude that the

channel errors at the demodulator output are random. However, this does not preclude the

possible occurrence of error bursts due to man made or natural RF interference. Therefore in

Section III below, we present performance results for various coding schemes over channels in

which burst errors occur.
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Figure 1. Simplified block diagram of the Ku-band dowrdink through TDRS.
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Parametersof theKu-banddownlinkdatareceivedbyMSU from GSFC[3] afterfor-

matconversionusingprogramEOSCONV.

File

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

OriginalName

wser641621.dat 2,087,325

wser641623.dat 268,426,275

wser641716.dat 2,087,325

wser641721.dat 268,426,275

wser641837.dat 2,087,325

wser641839.dat 201,314,595

wser641851.dat 241,966,335

wser641908.dat 2,087,325

wser641909.dat 134,213,130

wser641944.dat 268,426,275

wser642045.dat 268,426,275

wsfler641917.dat 222,034,395

wsfler641932.dat 2,087,325

Numberof Errors*Error Sequence

Length

ErrorDensity

(Bit ErrorRate)

12 5.7x10"6

1318 4.9x10"6

16 7.7x10-6

7556 2.8x105

412 2.0x104

41724 2.1x10-4

472582 2.0x10"3

38 1.8x10s

2522 1.9x10s

567820 2.lxl0 3

136 5.1X10 "7

3151969 1.4x10 2

37184 1.8x10 2

wsfler641934.dat 134,192,670 2262860 1.7x10 2

wsfler642037.dat 2,087,325 50594 2.4x10 2

wsfler642038.dat 125,853,600 3654733 2.9x10 2

* Not correct due to a format conversion inherent in FORTRAN



Onemethodof determining burst error statistics, specifically the burst length distribution,

is by segmenting the error sequence into error burst regions separated by error free gaps. In Sec-

tion D, the theoretical burst length distribution using the "gap" segmenting method, is derived for

random channel errors. This can be used as an additional test to determine if the channel errors

are random.

A. Double-Error Interval Distribution

After displaying several of the error sequences, it became evident that the channel errors at

the demodulator output may be random which will result in random occurrences of error pairs at

the NRZM decoder output. Two methods were used to determine whether the error events are

indeed random. These are described in the following two sections.

1. Cramer Von-Mises Distribution Test

The f'trst method makes use of the Cramer Von-Mises distribution test to determine

whether the occurrences of the double errors were indeed Binomial (random). The procedure

required that the errors at the demodulator output be determined from the errors at the NRZM

decoder output as shown in Figure 1. Each error at the demodulator output corresponds to the

occurrence time of a double error at the NRZM decoder output. To this end, an NRZM encoder

program was developed (see Section V below) to reverse the effect of the NRZM decoder giving

the raw error sequence at the demodulator output. Once the error sequence at the demodulator

output is constructed, the Cramer Von-Mises (CVM) distribution test can be applied to see if

they are Binomial. The CVM test will determine, with confidence level a, whether the hypoth-

esis that the errors are Binomially distributed (random) can be rejected.

*** PARAGRAPH DELETED ***

Note: An apparent anomaly in the data was due to an incorrect format conversion of the origi-

nal data due to a program language (FORTRAN) bug. The problem has been fired but not

before the results for this report were completed. The results given below are still valid,

however now additional results (not presented here) are possible with the corrected data. All

references to data inversions or anomalies in subsequent paragraphs should not be interpreted

literally. No data inversions exist in the real EOS data obtained from GSFC.

As a result of an apparent anomaly (which has been since resolved), the CVM test could

not be applied to full sequences although some results were obtained by processing partial

sequences which did not include the data inversions. The hypothesis for the CVM distribution
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test is thattheerrorsareindeedBinomial. The CVM distribution test states that the hypothesis

should be rejected, with confidence coefficient c_, if the test statistic, computed from the error

sequence, is greater than the critical value, computed from the theoretical Binomial error distri-

bution given Binomial errors [5]. Critical values for various confidence coefficients, taken from

[5], are given here for reference.

cx Critical Value

0.1 0.347

0.05 0.4610

0.025 0.5810

0.01 0.743

0.001 1.168

The confidence coefficient, cx = 0.05 for example, simply means that if the errors are truly Bino-

mial, then the test statistic will not exceed the critical value (hypothesis will not be rejected)

(1 - cx) x 100 = 95 times out of 100.

The CVM test was applied to portions of the NRZM encoded data, corresponding to the

data at the demodulator output, using a confidence coefficient cx = 0.05 with critical value

0.4610. File wsfler642037.dat was truncated to eliminate all the data inversions and the CVM

test was applied. The test statistic computed was 0.105 which is less than 0.4610. Therefore, the

hypothesis that the errors are Binomial would not be rejected. As another case, file

wsfler641932.dat was truncated and the CVM test was applied giving a test statistic value of

0.365 which is less than 0.4610. As a final example, the CVM test was applied to the entire

wser641837.dat file (no data inversion was found) giving a test statistic value of 0.199. For con-

fidence coefficients 0.05 and below, the hypothesis could not be rejected in all cases. Therefore,

based on these limited results, it is concluded that the double errors occur randomly.

As a final note, the CVMblk program was applied to those same error segments. Prelimi-

nary results suggest that there may be some variation in the error density over small regions on

the order of a WTFF but no conclusions have been drawn.

2. Theoretical GAP Distribution

The second method used to demonstrate that the error events occur randomly used the

GAP method of segmenting an error sequence, see program GAPest in [1]. The GAPEst pro-
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gram,with GAP = 1, was used to look for consecutive errors in the error sequence. Since the

errors at the NRZM decoder output must occur in pairs, the GAPEst program treated each double

error as a burst. The GAPEst program outputs the burst interval distribution to a f'de. If the

double errors occur randomly, then the burst interval distribution (each error pair constitutes a

burst) must follow the theoretical interval distribution for Binomial errors. Note that it is possi-

ble for consecutive channel errors to occur at the demodulator output. When this occurs, error

pairs will not be observed at the NRZM decoder output. Although this will bias the burst

interval distribution, the probability that this occurs is small so the effect is negligible.

Given that an error occurs, let Li denote the event that an error flee interval of length i - 1

occurs followed by an error. An error sequence consisting of Binomial (random) errors with

error probability p, has a theoretical error interval distribution given by,

P{L,} = q'-'p (1)

where q = 1 - p. Program IntvBin was written to compute this theoretical distribution.

Figure 2 shows the empirical double-error interval distribution for file wsfler642038.dat

along with the theoretical Binomial error interval distribution calculated from (1). Clearly the

curves match very well. Similarly, Figure 3 shows the empirical double-error interval distribu-

tion for file wsfler641932.dat along with the theoretical distribution. Again, the curves match

well. Both of these fries correspond to error densities at the NRZM decoder output of about

2x10 -2.

To determine whether the statistics vary with error probability, the empirical double-error

interval distribution was computed for files wser1944.dat and wser641851.dat. These are shown

in Figure 4(a) and Figure 5(a) respectively. However, the variance of the distribution estimate is

quite large due to the fact that relatively few occurrences for each interval length were found

(this is the reason for the apparent quantized look of the probability values). Therefore, the dis-

tribution was filtered by accumulating every 16 discrete distribution values. These are shown in

Figures 4(b) and 5(b), respectively, along with filtered versions of the theoretical distributions.

Again, the curves shown match extremely well. As in the previous section, it is conch_ded that

the double errors occur randomly.

B. Theoretical GAP distribution for Random Errors

In this section, the theoretical burst length distribution, using the GAP method to segment

an error sequence, is considered. It has been shown in the previous section that the errors for the
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Shown for file wser641851.dat are a) the empirical double-error interval distribution,

and b) a comparison of the filtered empirical distribution with the filtered theoretical

Binomial-error distribution.
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Ku-banddownlink arerandomoccurrencesof doubleerrors. Deriving theexactburstlengthdis-

tribution for theseerror characteristicsis not trivial. However,it is possibleto derive thetheoret-

ical burst lengthdistributionassumingBinomial (random)errors. Clearly,this theoretical

distributionshouldbesomewhatrelated,perhapsin shape,to thetheoreticalburstlength

distribution for randomoccurrencesof doubleerrors. In this section,thetheoreticalburst length

distribution,usingtheGAP methodto segmenttheerror sequence,is derivedfor Binomial (ran-
dom)errors.

SupposethattheGAPmethodfor segmentinganerror sequenceis appliedto asequenceof

Binomial (random)errors,with errorprobabilityp, using a gap length of g. This requires that

consecutive error bursts be separated by an error free gap of at least g error sequence values. Let

L,. denote the event that an error burst of length i occurs. To compute the probability that L,.

occurs, it is assumed that an error free gap has occurred which must be followed by an error.

Then P {L;} is the probability that a burst of length i occurs followed by an error free gap (which

satisfies the assumption for the next burst occurrence). Three cases are considered separately.

First consider event L_, which represents an error burst of length 1. Given that a gap has

occurred (which must end with an error), L_ will occur if an error free gap of length g occurs.

Since the probability that an error occurs is assumed to be p, we have

P{L_} =(1-p)g =qg (2)

where q = 1 - p is the probability that a correct error sequence value occurs.

Second consider the event L_ for 2 < i < g + I. Since each error burst must begin and end

with an error, these errors are referred to as the terminal errors of the burst. Let the error

sequence values for event Li be assigned labels s_, s2, s3 ..... s i as shown in Figure 6. The termi-

nal errors for the burst correspond to s_ and si. Since a burst of length g + 1 has g - 1 error

sequence values between the two terminal errors, it is not possible for a gap of length g to occur

within the error burst. Therefore, the probability that a burst of length 2 < i < g + 1 occurs is

only a function of the probability that an error occurs for error sequence value s_ followed by an

error free gap of length g. This gives,

P {L,} = pq g , 2<i<g+l (3)

Note that this probability is not a function of the burst length.
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Figure 6. Illustration of the error sequence values for an error burst.
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Third considertheeventL,. for i > g + 2 (see if this is the same as the derivation in the

handwritten write-up). For a burst of length i to occur, the burst must be composed of sufficient

errors between the two terminal errors so that no gap of length g occurs, otherwise the segmenta-

tion process would break those errors into two bursts. Let Wj denote the event that no error free

gap of length g occurs for the error sequence values s2 through sj. With this definition, it is

possible to express the burst length probability as

P {L,.} = P {W,._I} pqg , i 2 g + 2 (4)

It is only necessary to specify P {IV,._ t}.

Although no closed form expression for P {Wi_ _} has been found, a recursion formula with

known initial conditions is derived below which completely specifies P {W__ _}. Let ej denote the

event that sj is in error and let e i denote the event that sj is not in error. Consider the following

cascs:

Case 1: e,._ _ occurs. For this case, event Wi_ _ will occur if Wi_ 2 occurs. The probability

that e__ 1 occurs is given by p.

Case 2: ei_2 ande___ occur. For this case, event W;_I will occur if W__3 occurs. The

probability that ei_2 and e-,._1 occur simultaneously is given by pq.

Case 3: ei-3, e_-2, e,-t occur. For this ease, event W,-__ will occur if We_4 occurs. The

probability that e;_3, e;-2, and e__ _ occur simultaneously is given by pq2.

The cases to be considered continue in a like fashion until we have,

Case g - 1: e__g+l, ei-s+2, "", ei-_ occur. For this case, event Wi-l will occur i_fW,._g

occurs. The probability that e,._g +_, e-,__8÷2, "'", e_- _ occur simultaneously is

given by pqg-2.

Case g: e__g, ei-g +_, "'", e_- _ occur. For this case, event IV,._ _ will occur if W__g_

occurs. The probability that ei_g, e__g +_, ..., __ _occur simultaneously is given

by pqg-1

Now observe that the events described in cases 1 through g above are mutually exclusive. That

is, an error burst pattern of length i must fall under one of the cases identified above and yet no

error burst pattern can fall under two or more of the cases simultaneously. Therefore, by the

theorem of total probability, P {IV,._ _} can be expressed as
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g-I

= E P{W,_j_2}p¢,
j=O

The iteration is initialized by defining,

0 i<1P{Wi-_} = 1 l<i<g+l

i >g +2 (5)

(6)

Note that when i = g + 2, there are exactly g binary symbols between the terminal errors. The

only way the GAP segmenting process would split the terminal errors is if all the symbols

between the terminal errors were error free. Clearly, the probability that this occurs is qg which

means P {Wg +l} must equal 1 -qg. It can be shown that P {Wg +1}, evaluated using (5), reduces

to 1 -qg.

In this section, the burst length distribution resulting from the GAP segmentation process

for random errors has been derived. The probability that a burst of length i occurs is P {Li} given

by (2), (3), and (4). To compute P {Li} for i > g + 2, (5) must be evaluated with initial conditions

given by (6). Program BinGAP performs these calculations.

To verify the derivation, CLEAN was used to generate the empirical burst length distribu-

tion, by executing the GAP segmentation process, on synthetically generated Binomially distrib-

uted errors. Figure 7 shows close agreement between the theoretical burst length distribution and

the empirical distribution for Binomial errors with error probability of 0.05 and GAP length of 6.
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Figure 7. Comparison between the theoretical burst length distribution, using the GAP seg-

mentation method, and the empirical distribution for Binomial errors with error prob-

ability 0.05 and GAP length of 6.
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An efficient coding/interleaving scheme is one which provides the required performance,

such as 10 "s bit-error probability or perhaps 2db coding gain, with minimal overhead (maximum

information throughput) and with minimal delay. All error correcting codes provide a perform-

ante gain, in the form of a reduced error probability and/or in the form of a reduced required

transmitter power. However, when an error correcting code is inserted into an existing data link,

this gain is achieved at the expense of information rate throughput. The reduction in information

throughput when an error correcting code in inserted in an existing system is identically equal to

the code rate.

For typical space communication links, it is required that the downlink provide a 10 s error

probability. Therefore given this requirement, the problem becomes one of selecting an error

correcting code which provides the required error probability with minimum code rate. The

CCSDS concatenated coding standard consists of a rate 1/2 convolutional inner code and a

(255,223) RS outer code. The net concatenated code rate is (1/2) (223/255) = 0.437. Although

the concatenated code will undoubtedly achieve the required error probability, it is not necessar-

ily the best code choice for EOS which is to use the Ku-band downlink through TDRS.

In Section A that follows, the performance of the (255,223) RS code operating on burst

errors is considered. In Section B, a comparison of various coding schemes including the

CCSDS concatenated code is considered on typical errors occurring at the NRZM decoder output

as characterized in Section II above.

Before proceeding, an issue of concern is the reliability of decoded error probability esti-

mates obtained by the simulation. Preliminary work indicated that the simulation run length,

required to achieve small variance estimates of the decoded error probability for a (255,223)

Reed-Solomon coded system, must be very long. Background work has indicated that the

decoder must output a large number of errors, on the order of many hundreds, before a small

variance estimate of the decoded error probability is achieved. This background work culmi-

nated in a paper which has been submitted to the IEEE Military Communications Conference,

1993 [6].

A. Burst Duration Study for a Reed-Solomon Code

The (255,223) RS code has a code rate of (223/255) = 0.875 which is exactly double the

code rate of the concatenated code. Therefore, eliminating the convolutional inner code immedi-

ately provides a factor of 2 increase in the information rate throughput of the system. However,
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this is acceptableonly if thedecodederrorprobability meetstherequired10s, or lower,error

probability specification.A proposedcodingschemefor theEOSdownlink consistsof

(255,223)RSencodeddataframesmultiplexedin theform of aCCSDStransferframe. A

CCSDStransferframeconsistsof 5 multiplexedRSencodeddatastreamswhichprovidesthe

effectof adepth5 block interleaver.Therefore,thesystemunderstudyin thissectionconsistsof

a (255,223)RScodeusedwith adepth5 byte-orientedblock interleaver.Notethatthefollowing
resultsdo not incorporatetheuseof NRZM data. Theresultsin this section are intended to dem-

onstrate the efficiency with which RS codes can correct burst errors. For the final report, results

will be shown for bursty errors which incorporate the use of NRZM data.

It is well known that space based communication systems operate over channels which

exhibit random errors along with error bursts. Therefore, in this section, we consider the per-

formance of the proposed coding scheme operating on burst errors. Burst errors can be charac-

terized by four distributions/parameters: burst duration distribution (d), rate of burst occurrence

(v), error probability within the bursts (Pe_), and error probability outside the bursts (Peg). The

following analysis consists of two cases considered below.

For the first case, it is assumed that error bursts occur so infrequently that only one error

burst will occur within a single interleaved block. In this case, the required error probability will

be achieved if the maximum anticipated error burst can be corrected. A (255,223) RS code can

correct a maximum of t = 16 code symbol errors or (16)(8) = 128 binary symbol errors. Since

an error burst is split into 5 segments by the depth 5 block interleaver, a total error burst of length

(128) (5) = 640 is correctable provided no other errors occur within the interleaved block. For a

75Mbps channel rate, this corresponds to an RFI interference burst of 8.51asec in duration. For a

150Mbps channel rate, corresponding to the high data rate requirement, this corresponds to an

RFI interference burst of 4.31.tsec in duration.

However, it is probable that random errors will occur within an interleaved block at the

same time that an error burst occurs. To consider the worst case, suppose that the binary channel

error probability, excluding error bursts, is 0.005. Each interleaved block contains a total of

(255) (8)(5) = 10, 200 binary symbols (10,200/8 = 1275 code symbols) which means that an aver-

age of (0.005) (10,200) = 51 binary symbol errors will occur within each interleaved block.

These binary symbol errors will cause 127511 -(1 -0.005) s] = 50 code symbol errors [7].

Therefore, each interleaved block can correct, on average, an error burst of length

8[(16) (5) - 50] = 240 binary symbol errors. This corresponds to an RFI burst of length 3.2_ec

and 1.61.tsec in duration for the current requirement and for the high data rate requirement,
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respectively. Thefollowing is a tablegiving theaveragecorrectableburst lengths,in binary

symbolerrors,for differentvaluesof thebinarychannelerrorprobability (excludingerror
bursts).

Average
Binary Channel MaximumCorrectable
ErrorProbability ErrorBurst

0.01 Zero

0.005 240

0.001 560

0.0005 600

0.0001 632

For thesecondcase,it is assumedthaterrorburstsoccurfrequentlyenoughthattheproba-

bility of multipleburstsoccurringper interleavedblockcannotbeignored. For this case,per-
formanceis stronglyrelatedto the burstduration,burstrateproductvd, theratio of random

errorsto bursterrorsR_, and the channel error probability. Figure 8(a) shows the decoded error

probability, called the Bit-Error Rate (BER), for a (255,223) RS coded system with a depth 5

block interleaver, with vd = 0.05, and with a channel error probability of Pch = 0.004. The chan-

nel error probability is the error density at the demodulator output due to all errors whether they

are caused by thermal noise or RFI. Clearly, for burst durations less than 75 binary symbols,

performance increases as R_, the fraction of random errors to total errors, decreases. This is

due to the fact that an RS code is a byte oriented code and demonstrates the efficiency with

which an RS code can correct bursty errors. However, for burst durations greater than 75 binary

symbols, performance decreases as R_ decreases due to the fact that each error burst which fills

the interleaved block causes decoding failure for the 5 RS codewords contained within that inter-

leaved block. The result is a decrease in system performance.

Figure 8(b) shows the decoded BER for the same parameters used for Figure 8(a) but with

vd = 0.01. Note the scale change for the abscissa. Although the curves do not all cross at a com-

mon point, it still appears that performance increases with decreasing R_ for burst durations less

than 75 binary symbols. Indeed, the achievable error probability for R_ = 0 (all errors occur in

bursts) is much below the required 10 s for all burst durations below 75 binary symbols. In fact,

the achievable error probability for R_ = 1/4 is below the required 10 .5 for all burst durations
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below75binary symbols. Usingobvious decoded BER trends as a function of defined parame-

ters, the conclusion earl be drawn that the decoded BER achieves the required 10s error probabil-

ity when the following conditions are met:

a) d < 75 binary symbols

b) vd <0.01

C) ech < 0.004

If these conditions are not met, then the decoded BER may or may not achieve the required BER,

however the following trends are noted:

a) Decoded BER decreases with decreasing Re assuming d less than some threshold

b) Decoded BER decreases with decreasing vd

c) Decoded BER decreases with decreasing Pch

d) Decoded BER decreases with increasing interleave depth

More results will be provided in the final report.

B. Comparison of Coding Schemes

In Section IT above, it is concluded that the errors at the demodulator output are random

which gives random occurrences of error pairs at the NRZM decoder output. In this brief sec-

tion, a comparison of various coding schemes operating on the types of errors anticipated at the

NRZM decoder output is given.

Figure 9 shows the decoded BER as a function of the raw error probability at the demodu-

lator output for various coding schemes including a (255,223) RS code, rate 1/2 constraint length

7 convolutional code (CCSDS standard inner code) without a Periodic Convolutional Interleaver

(PCI), the same convolutional code with a PCI, the CCSDS standard concatenated code, and a

stand alone (255,223) RS code using erasure decoding. The results indicate that the concate-

nated code performed the best. However, again it is emphasized that the best code choice is the

one with the lowest code rate and complexity that meets the 10 .5 specification (or other

specification). The following is a summary of the raw error probability at the demodulator out-

put required to give a decoded BER of 10 .5 for the various coding schemes.
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Demod Output BER
Code Type requiredto achieve I0s

CCSDS Concatenated I0_-_

Convolutional,PCI I0"_'°s

(255,223)RS (Erasuredecoding) 10"_'_

Depth 5 Block Inflv

(255,223)RS (Errorsonly decoder) 10_-s

Depth 5 Block Inflv

Convolutional,no PCI 10"_'_

Ifitispossibletoachieve at i0"2-_BER atthe demodulator output,then the bestcode choice is

the (255,223)RS code. This code has a highercode ratethan eitherthe convolutionalcode or

the concatenated code. The (255,223)RS code isalsoefficientatcorrectingerrorburstsas

shown in SectionA above. However, toconclude thatthe (255,223)RS code isthe bestchoice

requiresthatperformance be investigatedfor burstyerrorswhich would occur attheNRZM

decoder output. More resultswillbe given in the finalreport.

Note that,as shown inFigure9, the (255,223)RS code used with erasuredecoding per-

forms as well as the convolutionalcode with the PCI fordecoded errorprobabilitiesof I0"sand

below. Itisprudent touse erasureRS decoding when RFI ispresentin thechannel due to the

factthaterasuredecoding can correct,atbest,twice as many errorsper codeword than an errors

only decoder. Itispossibletopredictcode symbol errorsatthe decoder inputwhich arc likelyto

be in errorby investigatingsoftdecisionvaluesoutputby thedemodulator [8].
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There are two fundamentally different facets of a communication system which relate to

user data at the receiver; synchronization and steady state operation. Synchronization is the pro-

cess by which the receiver attempts to extract timing information from the received signal so that

optimum demodulation of the transmitted data can be achieved. While synchronization is

attempted, data transmitted across the link is lost. This gives rise to highly unreliable and there-

fore unusable data to the user. Once synchronization has been achieved, steady state operation

of the receiver provides highly reliable, although not error free, data to the user which is usable.

If the communication system is viewed as a system which processes binary data at the

input to give nearly identical binary data at the output, then synchronization would correspond to

the transient portion of the system and the steady state error operation (once synchronization has

been achieved) would correspond to the steady state response of the system. Although these two

facets of the system are related, the data output by each is treated differently, one gives rise to

unusable data (synchronization) and one gives rise to usable data (steady state operation), which

allows them to be analyzed separately. Steady state error statistics has been investigated in Sec-

tions 17 and Ill above. In this section, synchronization is considered.

Although synchronization issues were not a formal part of the statement of work for this

contract, the investigators feel that it is an important issue which must be investigated in con-

junction with steady state error statistic studies.

The CCSDS recommendation for Packet Telemetry [2] requires that a 32 bit PN sequence

header precede each CCSDS transfer frame. Synchronization is said to be achieved when two

consecutive 32 bit PN sequence headers are correctly detected. In the following development,

the average number of frames lost before achieving synchronization is derived for random chan-

nel errors. This provides a measure of how much data would be lost, on average, before achiev-

ing synchronization for the Ku-band downlink.

To achieve synchronization, a 32 bit window is applied to the hard decision data at the

demodulator output. Detection of the 32 bit PN sequence pattern is assumed to occur when the

Hamming distance between the transmitted PN sequence header and a 32 bit pattern at the

receiver is less than or equal to the preselected threshold, Q. In other words, detection occurs

when at least 32-Q of the 32 bits match the original PN sequence pattern. For each 32 bit pattern

considered, one of two possibilities exist. Let Ho denote the event that the 32 bit pattern corre-

sponds to the transmission of the 32 bit sequence header and let H_ denote the event that the 32

bit pattern does not correspond to the Iransmission of the 32 bit sequence header. If detection of

the 32 bit sequence header occurs given Ho, then the 32 bit sequence header is correctly detected.
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Let theprobability thatthis eventoccursbedenotedPal" If detection of the 32 bit sequence

header oceurs given H_, then false detection occurs. Let the probability that this event occurs be

denoted PIa.

If there are no channel errors, then the PN sequence header would be detected every time,

each detection spaced exactly 10,200 binary symbols apart corresponding to the 5 RS codeblocks

of data which follows each header. Synchronization is said to be achieved when two consecutive

PN sequence headers are detected by the correct binary symbol spacing.

Suppose the channel errors are random and oceur with probability Pen. Then the distribu-

tion of errors within each 32 bit PN sequence header at the receiver is given by a Binomial distri-

bution. Let hi denote the event that i binary symbol errors occur given Ho. Then the probability

that hi occurs is given by

P{hi} =(32i ) P_h (l-Pch) 32-' (7)

If the threshold is used to declare detection of the 32 bit PN sequence header, then detection will

occur when h,. for i K Q occurs given Ho. That is,

Q

e{P, Ino} - E t'{h,} (8)
lffiO

If it is assumed that the binary symbols corresponding to the data are completely random (and

the PN sequence header is delta correlated), then the probability of false detection is easily

shown to be

(9)

Since there are 10,200 binary data symbols per frame, there are 10,200, 32 bit sequences per

frame which can result in false detection. Therefore, the probability that false detection occurs in

a given frame is (10,200)P {P_ [H_}. For P_h < 0.1, it is easily shown that

(10,200)P {PId IH1} <<P{Pa I Ho}. So (7) and (8) define the probability that the 32 bit PN

sequence header will be correctly detected using the simple thresholding technique with thresh-

old Q.

Synchronization is said to be achieved when two consecutive PN sequence header detec-

tions occur which are spaced apart by the proper number of binary symbols. The average num-

ber of frames lost will be the average number of missed PN sequence headers before two

consecutive detections occur. This problem is not unlike that of determining the theoretical burst

length distribution described in Section II.A.2 above. For the moment, view each received
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CCSDStransferframeasa singleentity. Considergeneratingaframe detection error sequence

by substituting a single error symbol in a newly generated error sequence for each frame

received. A binary 0 in the frame detection error sequence is used to denote the correct detection

of the 32 bit PN sequence header. A binary 1 in the frame detection error sequence is used to

denote a missed detection of the 32 bit PN sequence header. Then synchronization is achieved

when two consecutive binary zeros occur in the frame detection error sequence because this cor-

responds to two consecutive correct detections of the 32 bit PN sequence header. The average

number of binary symbols passed before two consecutive zeros occur corresponds to the number

of missed frames before achieving synchronization. This average can be found by generating the

frame detection error sequence, applying the GAP error segmentation method, and determining

the average burst length. The results of Section II.A.2 can be used directly to determine the burst

length distribution using the probability of PN sequence header detection P {P# IHo} in place of

the channel error probability, p, used in the development in Section II.A.2.

Let p = 1 - P {Pd Ino}, q = 1 - P {Pd [ Ho}, and let L,. denote the probability that i frames

are past before achieving synchronization, i.e. two consecutive correct 32 bit PN sequence

header detections. Then the probability that Li occurs for g = 2 is given by (2) through (6) to be

q2, i=1
P(L,} = pq2, 2 <i < 3 (10)

P {Wi__}pq _ , i >4

where

i

P{W,_I}= £P{W,_j_2}pq j, i>4 (11)
j=O

and where the iteration is initialized by

{_ i < 1P{W,._I} = 1<i<3 (12)

Therefore, the probability that i frames are lost before achieving synchronization is given by (10)

along with (11) and (12).

To establish the average number of frames lost before synchronization occurs, consider the

fact that the starting point for the search to detect the 32 bit PN sequence headers can start any-

where within a frame. If it is assumed that the starting point is equally likely to be anywhere

within the f'trst frame, then the average number of frames lost will be 1/2 plus the average frames

lost after the f'u'st PN sequence header is encountered. Using this along with (10), the average
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numberof flameslost beforesynchronizationis achieved,denotedF, can be determined. Note

that it is assumed that the data between the two correctly detected PN sequence headers is usable

data and therefore does not constitute a lost frame. Given this we have

00

F =_+ ,-_ i P{L,} (13)

where the 1/2 accounts for the uniformly distributed starting point within a frame. Note that the

average data loss, in binary symbols, can be found by simply multiplying F by the data length in

each frame. Program SyncPb was written to calculate F for a given channel error probability pch.

Figure 10(a) shows the average number of frames lost before achieving synchronization as

a function of the channel error probability assuming that the channel errors used to detect the PN

sequence are independent. The figure shows that simulation results for a threshold of Q = 2

match very well with the theory. Figure 10(b) shows the average number of frames lost before

achieving synchronization as a function of the PN header detection failure probability. This

result shows that as long as the PN header detection failure is less than about 10 -3/4 = 0.18, syn-

chronization will be achieved within a frame or two. Program 'Sync' has been written to mea-

sure the average frames lost for an actual error sequence input to the program.

The Sync program was used to estimate the average number of frames lost for each of the

real EOS data fries received from GSFC. The results show that synchronization is not a problem

for any of the real error sequences. The worse ease arose for f'rie wser642038.dat which yields

an average of 0.6 frames lost before achieving synchronization.
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This section briefly describes additional capabilities which have been added to CLEAN.

The capabilities have been divided into two main sections. In Section A, additional error

sequence manipulation programs, which represent system components, are briefly described and

in Section B, programs written to evaluate theoretical formulas are briefly described.

A. System Component Program Modules

To more accurately represent the real EOS Ku-band downlink and to manipulate error

sequences, several new programs were written.

1. NRZMEncd (NRZM Encoder)

This program performs differential (NRZM) encoding on the error sequence. That is, the

encoder output toggles (changes binary status) when the input bit is a binary "1" and remains the

same when the input is a binary "0". The program reads in the error sequence by block and per-

forms differential encoding on each block and then writes the modified block back out to the

error.seq file.

Executing the program causes the 'error.seq' file to be read which contains an error

sequence (in packed format). The 'error.seq' file must exist prior to the execution of this pro-

gram. There are no assumptions associated with the implementation or output of this program.

2. NRZMDec (NRZM Decoding)

This program performs differential (NRZM) decoding on the error sequence. That is, the

decoder outputs a binary "1" when a transition occurs on the input data stream (a "0" followed by

a "1" or a "1" foUowed by a "0"). A binary "0" is output when no transition occurs (a "0" fol-

lowed by a "0" or a "1" followed by a "1"). The input error sequence is assumed to be stored in

default file 'error.seq' and the differentially decoded data stream is also output to that file.

The program reads in the error sequence by blocks and performs differential decoding on

each block and then writes the modified block back out to the error.seq file. The program out-

puts several statistics to the user screen as well.



Executingtheprogramcauses the 'error.seq' file to be read which contains an error

sequence (in packed format). The 'error.seq' f'de must exist prior to the execution of this pro-

gram. There are no assumptions associated with the implementation or output of this program.

3. Sync (Synchronization)

3O

This program calculatesthe synchronizationprobabilityfora synchronizationscheme in

which each dataframe ispreceded by a PN sequence header. Synchronizationwillbc saidto

occur when two consecutivePN sequences have a Hamming distancelessthanor equal to the

Threshold. The synchronizationprobabilityiscalculatedby consideringallconsecutivepairsof

PN sequences inthe errorsequence and counting the percentagewhich would achieve synchroni-

zation.

This program inputsparameters from an ASCII datafilewith defaultname 'Sync.prm' and

inputstheerrorsequence from data filewith defaultname 'crror.seq'.Various statisticsarcout-

put to an ASCII datafilewith defaultname 'Sync.ID',where ID isa threeletteridentifierforthe

currentrun which isinputfrom file'ID.prm'.

The program isrun by editingtheparameter fflc'Sync.prm' and selectingthe appropriate

parameters and by choosing a program ID by editingfile'ID.prm'. The 'error.seq'filemust

existpriortothe executionof thisprogram.

4. DisplSeg (Display a Segment of the error sequence)

This program displays a segment of the error sequence found in f'lle 'error.seq'. It is

assumed that the errors stored in error.seq are in the DBESS (Double Byte Error Sequence Sym-

bol) packed format. The program is interactive and asks the user to input the starting address of

the segment to be displayed as well as the segment length.

5. SvHist (Save Histogram as a pdf)

This subroutine writes out a histogram array, as a probability density function (pdf), to a

file in real*8 format. The unit attached to the opened file is 10. At the time that this subroutine

is called, unit=10 must not be

assigned.

This subroutine also outputs statistics of the pdf to the user screen and also to the log file

assumed to be open as unit=-8.



6. SeqTrunc (Sequence Truncation)
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This program truncates an error sequence in length by modifying the value of N stored in

the error sequence file header. This program is meant to be fast (the truncation only requires that

a single value in the error seq be modified) but this method is clearly memory inefficient due to

the fact that the error.seq file size remains unchanged.

7. ASCII (ASCII conversion program)

This program converts a pdf, stored as real*8, to an ascii format. The ascii output file has

a header which identifies the index and value columns followed by a series of records of the

form X Y where X is the index value and Y is the sequence (pdf) value.

This program will convert individual files or can convert a series of data files and combine

them into a single ASCII file. There are no assumptions associated with the implementation or

output of this program.

B. Theory related programs

Several programs have been written to evaluate the theoretical formulas discussed in pre-

vious sections of this report.

1. IntvBin (Theoretical PDF for Binomial Errors)

This program calculates the theoretical error interval probability density function for an

error sequence in which the errors are independent. This calculation is easily derived but is also

documented in, Kenneth Brayer, "Error Patterns Measured on Transequitorial I-IF Communica-

tion Links", IEEE Trans on Comm Tech, Vol COM-16, No. 2, April 1968, p. 216. The probabil-

ity of getting an n-bit gap is:

P(C"e le} = _ p(1-p)k
k=O

The program outputs the pdf to file 'IntvBin.pdf' which is a direct access file where each

real*8 pdf value is stored per record.
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Note that there are NO parameters to be read in for this program. However, various statis-

tics are output to an ASCII data file with default name 'IntvBin.ID', where ID is a three letter

identifier for the current run which is input from file 'ID.prm'. There are no assumptions

associated with the implementation or output of this program.

2. BinGAP (Binomial error GAP distribution)

This program calculates the theoretical GAP burst length distribution for Binomially dis-

tributed errors which is described in Section II.B above. The final distribution is output to fde

'BinGAP.pdf' as a pdf fde. This program inputs the GAP parameter from the user interactively.

Various statistics are output to an ASCII data file with default name 'BinGAp.log'.

3. SyncPb (Synchronization with the Channel error probability)

This program calculates the synchronization probability for a synchronization scheme in

which each data frame is preceded by a PN sequence header. Synchronization will be said to

occur when two consecutive PN sequences have a Hamming distance less than or equal to the

Threshold. The synchronization probability is calculated by considering all consecutive pairs of

PN sequences in the error sequence and counting the percentage which would achieve synchroni-

zation.

It is assumed that the binary channel errors are independent. This program inputs parame-

ters from the user interactively. Various statistics are output to an ASCII data file with default

name 'SyncPb.ID', where ID is a three letter identifier for the current run which is input from

file 'ID.prm'.

4. SyncPPN (Synchronization with probability of PN detection failure)

This program calculates the synchronization probability for a synchronization scheme in

which each data frame is preceded by a PN sequence header. Synchronization will be said to

occur when two consecutive PN sequences have a Hamming distance less than or equal to the

Threshold. The synchronization probability is calculated by considering all consecutive pairs of

PN sequences in the error sequence and counting the percentage which would achieve synchroni-

zation.
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Thisprograminputsparametersfrom theuserinteractively. Variousstatisticsareoutputto

anASCII datafile with defaultname'SyncPPN.ID',whereID is athreeletter identifier for the

currentrunwhich is inputfrom file 'ID.prm'.

5. QuantPDF (Quantize PDF)

This program inputs a pdf from a file and quantizes it into ranges specified by the user.

The values for the Quantized PDF are found by integrating (summing) the PDF in the specified

quantization ranges. The PDF is read in from a file assumed to be stored in direct access format.

There are no assumptions associated with the implementation or output of this program.
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OBJECTIVES

->

->

Summarize work performed from July 1, 1992 through June 30, 1993 for
NASA grant NAG5-2006.

Discuss research directions for July 1, 1993 through June 30, 1994 which
will include a study of integrated compressor/coder system performance for
LANDSAT VII.
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OVERVIEW OF CLEAN

->

->

CLEAN is a simulation tool to investigate performance of codes in random
and non-random error environments.

Includes:

-> Random and non-random error sequence generation

* Burst length distribution can be fixed, Gaussian, and Pois-
son

* Burst interval distribution can be periodic, Gaussian, and
Poisson

* Error density within the bursts and outside the bursts is user
selectable

-> Decoding Operations

* Reed-Solomon ("black box effect")

* BCH (the block decoder which implements the Reed-
Solomon code is completely general)

* Viterbi (fully implemented Viterbi decoding algorithm)

-> Interleavers

* Block Interleaver

* Periodic Convolutional Interleaver

-> Error Sequence Analysis Programs

* Bursty-Error parameter estimation (DeltaEst,GAPEst)

* Error distribution tests (Cramer Von-Mises)

* Error Interval Histogram

* Moving Average (MA) filter

-> Utilitiesffheoretical function generation
* EOS conversion

* Theoretical Error Interval for random errors

* Many others



WHITE SANDS DATA RESULTS

The White Sands data
received from GSFC

indicates that the errors in the Ku-band downlink
are

RANDOM*

* A 60Hz fluctuation in the error density was found in some of the data sets.
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CRAMER VON-MISES (CVM) TEST STATISTICS

File

No. Original Name

1

3

5

8

13

Error Sequence
Length

Number of Errors*
CVM

Test Sta-
tistic

wser641621 .dat 2,087,325 12 0.3684

wser641716.dat 2,087,325 16 0.1457

wser641837.dat 2,087,325 412 0.1609

wser641908.dat 2,087,325 38 0.0433

wsfler641932.dat 2,087,325 37184 2.4308

ot Critical Value

0.1 0.347

0.05 0.4610

0.025 0.5810

0.01 0.743

0.001 1.168
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CONCLUSIONS

=> The errors in the real EOS Ku-band downlink data are random

=>

=>

=>

Reed-Solomon codes are efficient at correcting bursty errors (performance
improves as the error become clustered).

Reed-Solomon erasure decoding can significantly improve performance

In general, performance degrades as error become clustered for convolu-
tional codes and Viterbi decoding
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PUBLICATIONS

=> "Confidence Intervals for Simulations Using Reed-Solomon Codes", W.J.
Ebel, F.M. Ingels, MILCOM '93, October 1993, accepted.

=> "Frame Synchronization for the NASA CCSDS Packet Telemetry Stan-
dard", W.J. Ebel, IEEE Transactions on Communications, to be submitted.
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GOALS

=> Integrate RICE compression/decompression algorithms into CLEAN

=> Acquire satellite data of RICE compressed/decompressed data from GSFC

=>

=>

=>

Study BCH coding/compression performance with the acquired data

Investigate possible alternative coding/compression strategies which might
prove more efficient

Draw conclusions about achievable performance with the current proposed
system and alternative system configurations
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DATA COMPRESSION vs. DATA EXPANSION

[W1, ..., Wk]
FEC

ENCODER

_,Zl,..., Zn n > k

Expansion Factor = n/k

=> What is compression? An algorithm which eliminates redundancy in a
data set so that the # of bits required to represent
that data set is minimized.

Ix,, ....
COMPRESSOR

[Yl .... , YM] M < N

Compression Ratio = (N/M): 1

=> What types are there?

-> Lossless (Reversible Operation)
Huff man

RICE

Run Length Coding

White Block Skipping
Shift Code

-> Lossy (Not a Reversible Operation)
Transform

Vector Quantization



PERFORMANCE MEASURES/
CONCEPT ILLUSTRATION

->

->

How can we measure the performance of a compression algorithm?
Use the entropy of the data source as a figure of merit. If a compres-
sion algorithm performs near the entropy of the source, we conclude
that the algorithm is good.

The entropy of a data source is a measure of the randomness of the source

output. It's numerical value is the average number of bits required to
represent each source symbol output.

=> For example:

S ource

Output
Binary
Code

Xo 00

X1 01

X2 10

Output
Prob.

Huffman
Code

.5 0

.25 10

.125 110

X3 11 .125 111

Ave. Bit Length 2 b/sym 1.375 b/sym

The entropy, H(x), of this source is 1.375 bits/source symbol



COMPRESSION SCHEME ISSUES

=>

_->

=>

-->

->

-.>

-->

Is lossless compression required, or can some data resolution be lost?

What compression ratios are achievable for the various compression
algorithms given YOUR data? Compression ratios are data dependent.

How will errors in the compressed data affect errors in the decompressed
data? Is it possible for error propagation to occur?

What are the source data characteristics?

Has the data been companded via a log function before compression'?
if so, how will this affect the error statistics after decompression?

How will variable (unpredictable) blocklengths of compressed data affect
multiplexing/demultiplexing operations? Will we have problems
finding the block boundaries after demulfiplexmg?

How can synchronization be achieved to locate compressed data
boundaries?

How might errors in the compressed data affect boundary detection?
How might errors in the compressed data affect ID or frame detection?

Note: Boundaries in the compressed data may exist to provide error
truncation.

How fast can boundaries in the compressed data be detected given the error
probability output from the FEC decoder? How much data will be lost
before synchronization will occur?



RICE COMPRESSION

* -->

.->

=>

=>

Assumptions:

-> Source data has been preprocessed so that data samples entering the
compressor are independent.

-> Data samples entering the compressor have been relabeled
(renumbered) so that higher probability samples have smaller
numbers.

-> Parameters of each compression algorithm have been optimized for the
processed data statistics anticipated.

Architecture:

-> Operates on blocks of processed source data. Block sizes may be
determined a priori or may be determined on the fly.

-> The compression algorithm is composed of several simple compression
algorithms, each of which is designed to efficiently compress a
subset of the total span of possible data statistics.

o = c2-g[:g]

(3 V112] = FS[3[] (Golomb prefix code)

o V:[:C]=CFS[2]

O = 8C[ ] =
-> Simple processing of the current processed data block determines, with

high probability, which algorithm will perform the best (near the
entropy of the data).

Operation:

-> Some processed data is partitioned into a data block.

-> A simplified algorithm is applied to the data block to determine which
simple compressor algorithm will perform the best.

-> The data block is compressed with that compressor.

-> The compressor outputs the total block of compressed which includes
the algorithm ID plus the compressed data (qt4[. ]).

Notes:

-> The RICE compression algorithm is reversible (lossless). This does
not mean that the decompressed data will be error freer

-> If the data statistics during operation are not as expected, data
expansion can occur!
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AVERAGE PERFORMANCE OF EACH SIMPLE
COMPRESSOR*

U

Z

<

I/3

(EXAMPLE WITH

/
/

!
I

K -= MEASUREMENT SPAN >> J
L

-= MEASURED AVERAGE PROBABILITY

DISTRIBUTION OVER THE K SAMPLES

1
l

1

0 1 2 3 4 5

MEASURED DATA ENTROPY, H(P) BITS/SAMPtE

*Taken from Rice, R.F., "Some Practical Universal Noiseless Coding Techniques".
JPL Pub. 79-22. p. 7



PITFALLS TO AVOID

->

->

-.->

=>

_->

=>

The RICE algorithm partitions the original data into groups of 16 samples
(optimum for a specific set of data). Is this optimum for YOUR data? If not,
the compression ratios for your data might be intolerably low!

The RICE algorithm assumes that the original source data has been prepro-
cessed so that samples are independent. Is true for the data input to the Loss-
less Image Compression Chip Set? YES! Has your data been successfully
preprocessed? If not, the compression ratios for your data might be intoler-
ably low! How can one determine if the samples axe sufficiently indepen-
dent?

The RICE algorithm assumes that, even though the exact distribution for the
preprocessed data samples is unknown, the ORDERING of the probabilities
of the preprocessed data samples is roughly known. Do you know this order-
ing for YOUR data? If not, and you guess wrong, the compression ratios for
your data might be intolerably low! What if the probability ordering changes
as a function of time? The RICE compression algorithm allows compression
near the entropy for the processed data if the entropy of the processed data is
within some predetermined bounds. However, even if a block of your data
satisfies this entropy range, your compression may be a far cry from the
entropy IF your probability orderings are off base!

It is possible to over design the compressor. Suppose that your entropy
ranges are 3<H<5. Then to design a compressor which works on entropy
ranges 0<H<8 is unnecessary and could very well complicate the decompres-
sion operation, resulting in higher sensitivity to errors, to the point where an
acceptable solution does not appear possible!

Does the decompression assume that there are not errors in the compressed
data? What happens if there are errors in the compressed data? There are
issues dealing with handling inconsistencies in the decoding operation which
must be dealt with for proper chip set operation.

Good performance of the RICE compression algorithm requires that the
expected variations in the data be well understood. It requires that highly
redundant portions of the data are carefully exploited. EVEN IF YOU HAVE
SUCCESSFULLY PREPROCESSED THE SOURCE DATA AND YOU

SUCCESSFULLY ORDER, BY RANKING THE PROBABILITIES, THE
PROCESSED DATA SAMPLES, THE RICE COMPRESSION ALGO-

RITHM MAY NOT PERFORM WELL! As an example, see compressor WT.
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Work Summary for 1992-1993

A. Overview of the Communications Link and ANalysis
simulation tool (CLEAN)

B. Error analysis results for the White Sands Ku-band
downlink test data acquired from GSFC

C. Present additional theoretical code performance results
on burst errors

D. Summarize conclusions

E. Identify publications resulting from the research

Work Directions for 1993-1994

A. Build or acquire and integrate RICE compression/de-
compression algorithms into CLEAN

B. Acquire satellite data of RICE compressed/decom-
pressed data

C. Study coding/compression performance with the
acquired satellite data.

D. Draw conclusions about achievable performance

HI. RICE Compression

A. Data Compression versus Data Expansion
B. Performance measures

C. Compression Scheme Issues

D. The RICE compression algorithm
E. Pitfalls to avoid

Compression/FEC Integration
A. Issues

B. Analysis Approach (Simulation)

C. Design Approach



COMPRESSION/FEC INTEGRATION ISSUES

->

_->

=>

_->

Are both a compressor and FEC required in the system to combat channel
errors and still provide the overall required compression?

What is the best way to integrate the compressor/FEC/interleaver within a
telemetry frame or packet? Stated another way, what telemetry format
constraints are placed on the system?

How much do the channel statistics vary (assuming they are not stationary)
with respect to a compressed block of data?

-> If an FEC is used, can it effectively correct errors resulting from
the extremes of the varying channel error statistics?

-> If not, how does one select a compression algorithm and FEC
which is compatible with the telemetry frame format and which
can also effectively correct the extremes of the statistically vary-
ing channel errors?

-> Is it possible that the problem is overly constrained?

What FEC and compression algorithm have similar architectures? Which
of those architectures are similar to the type of data output by the data
source?



ANALYSIS APPROACH

=>

->

Simulation is the best approach for the analysis.

->

->

->

Why?

Performance is strongly dependent upon data/channel statistics
which probably cannot be modeled mathematically.

The complexity of the overall system will, in all likelihood, not
result in tractable mathematics.

A simulation, designed to conduct trade studies, could be easily
adapted as a lab tool for performing, in software, compression of
data.

What should the simulation be able to do?

-> Perform the complete compression/decompression operations for
selected algorithms

-> Perform "black box" effects of the channel. This could be accom-
plished using:

- Real Channel error data

- CLASS simulated channel error data

- Simplified Mathematical models

-> Perform "black box" effects of various FECs.

-> Investigate synchronization issues

-> Investigate error propagation
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DESIGN APPROACH

=>

=>

=>

=>

=>

=>

What approach/strategy might a designer use to select a good integrated
compressor/FEC scheme taking into account the channel effects?
Try this...

First,

->

->

->

study the compression algorithms in detail.

Determine the expected compression ratio with your data

Study the effects on the decompressed data when errors occur on the
compressed data.

Understand whether and to what extent error propagation might
OCCur.

Second, study the FECs/interleavers in detail.

-> Determine the type of errors each FEC is designed to correct.

-> Determine the type and density of errors output by each FEC given
the channel error statistics.

Third, study the channel to determine the type (random, bursty, mixed,
periodic) and density of errors expected.

Fourth, iterate as following:

-> Select a compression scheme so that the total effective compression
ratio (compressor compression ratio times the expansion factor of
the FEC) just meets the spec. Note: at first do not place an FEC in
the system design.

-> From studies previously conducted, determine whether errors in the
channel will result in acceptable performance for the decompressed
data.

-> If yes, the design is complete.
If no, choose an FEC to provide more error protection (this will
surely increase the FEC expansion factor).

Note: Best design will meet spec while minimizing hardware/algorithm
complexity, cost, size, weight, power, ... It might be helpful to choose a
compressor and FEC with similar algorithm architecture.

=> Note: It may not be possible to satisfy all the system requirements!


